Call for Proposals on IRAM Telescopes

The deadline for submission of observing proposals on IRAM telescopes, both the NOEMA interferometer and the 30-meter telescope, covering the scheduling period 1 December 2015 to 31 May 2016, is 17 September 2015, 17:00 CEST (UT + 2 hours).

IRAM proposals should be submitted through the Proposal Management System (PMS) at URL:

http://pms.iram.fr/pms/

PMS provides on-screen instructions to guide the proposal editor through the submission process. The procedure consists in filling in an on-line form with the details of the requested observations (source coordinates, receiver setups, array configuration, etc.), and to upload a single file in pdf format containing the scientific and technical justification. A LaTeX template is provided from the PMS submission page for your convenience. You may customize this file, or generate the pdf file with another software, but in any case proposers should respect the following requirements: (1) A normal proposal may contain up to two pages of text describing the scientific aims (4 pages for a Large Program, see below) (2) you may add up to two pages of figures, tables, and references, and (3) the font size must be 11pt or larger.

For a proposal to be complete, PMS requires that all authors validate their identity (e-mail and affiliation) and their participation to the proposal before the deadline. The editor of the proposal will have to send invitations to all authors through PMS by clicking an invitation button. We urge proposal editors to invite the authors through PMS well before the deadline to give them enough time to validate their identity before the deadline.

PMS will be opened for submission of new proposals about three weeks before the deadline. Proposers may modify their proposals in PMS until the deadline, in which case the submit button must be activated again after modification of the proposal. Please avoid last minute submissions when the network could be congested. If you experience any difficulty with the submission process in PMS, please contact us at pms-feedback@iram.fr for help. You may also use this e-mail address for bug reports, general questions and comments.

Detailed information on time estimates, special observing modes, technical information and references for both the NOEMA interferometer and the 30m telescope can be found on the IRAM web site under the science users tab:

http://www.iram-institute.org/

Proposers are encouraged to use the CDS (Centre des Données astronomiques de Strasbourg) to check whether a source has already been observed at the 30m telescope or the PdB interferometer. We recommend to use the VizieR Catalogue Service to query the header data of IRAM observations obtained since September 2009 for the 30m, and since 1990 for the PdBI.

We encourage the submission of Large Observing Programs that require more than 100 hours of observing time and that address strategic scientific issues, using the 30m telescope. You may consult the Large Program Policy on the IRAM web site for further details. Due to the large investment in technical time necessary in the current extension phase of the NOEMA project, Large Programs will not be accepted for the interferometer under the current Call for Proposals.

Publications resulting from NOEMA or 30m telescope observations should acknowledge this in a footnote “Based on observations carried out under project number XXX-YYY with the IRAM NOEMA Interferometer [30m telescope]. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain)”. IRAM welcomes an acknowledgment to the IRAM staff for help provided during the observations and for data reduction.

N. Billot & J.M. Winters

1PMS remains open at all time for submission of Director Discretionary Time proposals.
2search IRAM as catalogue name.
The 30-meter Telescope

Proposals for two instruments will be considered for the coming semester (1 December 2015 to 31 May 2016):

1. the Eight MIxer Receiver EMIR, consisting of dual-polarization receivers, and operating in the four bands at 3, 2, 1.3, and 0.9 mm wavelengths,

2. and the 9 pixel dual-polarization heterodyne receiver array, HERA, operating at 1.3 mm wavelength.

Both instruments can be connected to a suite of narrow- and broad-band (up to 32 GHz) spectrometers with resolutions ranging from 3.3 kHz to 2 MHz. A detailed account of the current observatory capabilities and other organisational considerations can be found in a separate document on the Call for Proposals and the 30m web pages.

During the winter semester emphasis will be put on observations at the shorter wavelengths but 3 mm proposals are also encouraged, particularly if they are suited for medium or low quality weather backup. As in previous semesters, we will offer several weeks of pooled observations in order to optimize the use of the telescope at short wavelengths. Proposers are requested to use the EMIR and HERA time estimators which are available online via the IRAM 30m webpage.

What is new?

Preparation for the installation of the new 1 mm / 2 mm continuum camera NIKA2 is progressing very well. In April, the receiver cabin was refurbished with new optical elements to widen the available field-of-view of the telescope to up to 7’. The alignment and commissioning that followed were successful and showed that the performances of the heterodyne receivers remained unchanged, in particular the beam efficiencies, as expected. A detailed report is available online. The cabin was further upgraded with adequate mechanical, thermal and electrical components to host the large NIKA2 cryostat. The NIKA2 camera is planned to be installed at the telescope in October 2015, with a subsequent commissioning phase that will likely extend into next year’s summer semester.

We also plan to upgrade the 3 mm band of EMIR with new mixers and optical elements. This new setup will allow to extend the E090 frequency range down to 71 GHz, and the ortho-mode transducer used to split the signal in two polarisations, utilising a single horn, will ensure a perfect alignment between both polarisations. The frequency range between 71 and 81 GHz will give access to a number of important chemical tracers of the interstellar medium and to bright cooling lines of redshifted objects, which were previously unaccessible to EMIR. Of particular interest are the low lying rotational transitions of deuterated species like DCO+, DCN, DC$_3$N, DNC, N$_2$D$^+$, CH$_3$OD. Proposers requesting observations in the 71 – 81 GHz range should mention this explicitly in their proposal. If accepted and scheduled, such observations would be carried out on a shared risk basis.

The mixers of the E150 band will also be replaced during the autumn maintenance period to cure the degraded image sideband rejection recently measured on the current mixers. A detailed report on this issue is available online, on the EMIR homepage. With the new mixers, the E150 noise performance and frequency range are expected to remain unchanged.

N. Billot & C. Kramer
The NOEMA Interferometer

Conditions for the next winter period

Commissioning of antenna 7 was successfully completed during the last months and the new antenna joined the array for regular observing at the beginning of the current summer semester. For the upcoming winter semester 2015/2016, seven antennas will therefore be available for regular observing.

Each NOEMA antenna is currently equipped with dual polarization receivers operating in the 3 mm, 2 mm, and 1.3 mm atmospheric windows. The frequency ranges are 80 GHz to 116 GHz for band 1, 129 GHz to 177 GHz for band 2, and 201 GHz to 267 GHz for band 3. Proposal requesting band 4 will not be accepted under this Call for Proposals for the winter 2015/2016 observing period.

At any given time, one frequency band can be observed, with the two orthogonal polarizations available. Each polarization delivers a 3.6 GHz bandwidth which coincide in the sky frequency scale. The wide-band correlator WideX gives access to the two 3.6 GHz wide IF bands simultaneously providing a fixed spectral resolution of 1.95 MHz over the full bandwidth for up to eight antennas. The narrow-band correlator accepts two signals of 1 GHz bandwidth, that must be selected within the 3.6 GHz delivered by the receiver. Spectral resolutions range from 40kHz to 2.5MHz in eight independent spectral units. The narrow-band correlator can process the signals of up to six antennas.

During the course of the winter semester, we plan to schedule all four configurations. A preliminary configuration schedule for the winter period is outlined below. Adjustments to this provisional configuration planning will be made according to commissioning requirements in the frame of NOEMA, proposal pressure, weather conditions, and other contingencies.

<table>
<thead>
<tr>
<th>Conf</th>
<th>Scheduling Priority Winter 2015/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>December</td>
</tr>
<tr>
<td>(D)</td>
<td>December – January</td>
</tr>
<tr>
<td>A</td>
<td>January – February</td>
</tr>
<tr>
<td>B</td>
<td>February – March</td>
</tr>
<tr>
<td>C</td>
<td>March – April</td>
</tr>
<tr>
<td>D</td>
<td>April – May</td>
</tr>
</tbody>
</table>

Four new configurations have been designed for the seven antenna array. Since the narrow-band correlator can process the signals from 6 antennas only, corresponding subsets of the new 7 antenna configurations will be fed to the NB correlator:

<table>
<thead>
<tr>
<th>Name</th>
<th>Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>7A</td>
<td>W27 W10</td>
</tr>
<tr>
<td>7A6</td>
<td>W27 W10</td>
</tr>
<tr>
<td>7B</td>
<td>W23 W05</td>
</tr>
<tr>
<td>7B6</td>
<td>W23 —</td>
</tr>
<tr>
<td>7C</td>
<td>W12 W09</td>
</tr>
<tr>
<td>7C6</td>
<td>W12 W09</td>
</tr>
<tr>
<td>7D</td>
<td>W08 W05</td>
</tr>
<tr>
<td>7D6</td>
<td>W08 W05</td>
</tr>
</tbody>
</table>

Due to the large investment in technical time necessary in the current extension phase of the NOEMA project, Large Programs will not be accepted for the interferometer under this Call for Proposals. A detailed description of the current NOEMA capabilities and organisational considerations are given in a separate document on the Call for Proposals pages and on the NOEMA Documentation web pages.

Jan Martin WINTERS
Guidelines for Observing Time at the IRAM Facilities

Considering the much increased time requests for the IRAM telescopes over the last few years, taking into account the early science operations of ALMA, and considering the substantial new investments of the IRAM partners into upgrading the Plateau de Bure interferometer into NOEMA, the following guidelines for allocation of telescope time have been put in place:

1. In deciding on proposal rankings the Program Committee is requested to take into account the publication record and impact of the proposers with previous IRAM telescope time allocations. The proposers should also note in their application whether the same or a similar proposal was or is intended to be submitted to ALMA, in which case a special justification is required why IRAM telescope time is needed.

2. Up to 15% of the available observing time may be invested into projects submitted by PIs affiliated with institutes in non-IRAM partner countries.

3. The fraction of time for Large Programs (a detailed description is given on the [IRAM website](http://www.iram-institute.org/EN/content-page-240-7-158-240-0-0.html)) can be expanded to a total of about 50% of the scheduled telescope time on either of the IRAM telescopes. In order to ensure proper management of these programs in close interaction with the IRAM observatory, including the provision of suitable archive data products for the general scientific community, only programs led by a PI located in one of the IRAM partner countries will be considered.

4. Once accepted, PIs of Large Programs cannot submit other proposals (as PI) during the active time of the Large Program.

Finally, we inform that the IRAM Partners will reserve time for mutually agreed “Observatory Programs” once the NOEMA upgrade is sufficiently advanced.

Data policy

The IRAM data policy is as follows:

- IRAM organizes storage of raw and online calibrated data for the 30m telescope and storage of raw data for NOEMA/PdB on unlimited time scales.
- Header information of PdB/NOEMA observations later than 1991 can be found in the CDS ([Centre de Données astronomiques de Strasbourg](http://vizier.u-strasbg.fr/viz-bin/VizieR-3?-source=B/iram/pdbi)):
 - http://vizier.u-strasbg.fr/viz-bin/VizieR-3?-source=B/iram/pdbi
- Header information of 30m observations later than 2009 can be found in the CDS:
 - http://vizier.u-strasbg.fr/viz-bin/VizieR-3?-source=B/iram/30m
- Observing programs are distinguished between normal programs and large programs. Data from large programs are public in reduced format after an 18 month proprietary period (counting from the end of the last semester of observations) and are accessible through the [IRAM Large Program Archive](http://www.iram-institute.org/EN/content-page-240-7-158-240-0-0.html) at http://www.iram-institute.org/EN/content-page-240-7-158-240-0-0.html
- Data from normal programs so far had indefinite proprietary time. Following a decision of the IRAM partners in June 2015 the following changes are introduced: Raw data from NOEMA/PdB or online calibrated data from the 30m telescope of individual normal programs may be provided by IRAM after a three year proprietary period (again counting from the end of the last semester of observations) and depending on directors decision. Multiple large scale requests are excluded. This policy applies to future programs and to programs terminated during the winter semester 2013/14 or later. Data from programs finished before this date can be requested after December 2016.
IRAM does not provide support for data reduction of such retrieved data. Referencing of these data should follow the standard IRAM reference (see the Data publication policies at http://www.iram-institute.org/EN/content-page-94-7-56-90-94-0.html and in addition include at least one reference to publications of the PI team, or the program number in case the data have not yet been published. Further practical details will be made available within the next 12 months.

Travel funds for European astronomers

The European RadioNet3 project has been running since January 2012, and nearly 3000 hours of IRAM telescope time, corresponding to about 100 TNA-eligible projects, have received financial support through the RadioNet/TNA program. This 4-year program is now due to end in December 2015. To pursue this successful community-wide initiative, a new proposal is in preparation for submission to the EC in early 2016, as part of the Horizon2020 research framework program. In the meantime, no financial support will be available for European astronomers for the coming winter semester at the IRAM observatories.

N. Billot & R. Neri