IRAM 30-meter Telescope # Observing Capabilities and Organisation Carsten Kramer & Miguel Sanchez Portal July 28, 2021 | Τ'n | This document is updated twice a year to reflect | | 7 Proposal preparation | 8 | | | | | |-----|--|---|--|------|--|--|--|--| | | e current capabilities of the 30-meter telescope | 7.1 Technical pre-Screening | 8 | | | | | | | | e time of the Call for Proposals publication. No | | 7.2 Duplication Check | 8 | | | | | | | ivial changes with respect to the previous versice marked in red. Note that this document contains | 7.3 Protected Fields | 8 | | | | | | | | tive links marked with a different font for an eas | 8 Organizational aspects | 9 | | | | | | | ac | cess to documentation, e.g. IRAM web pages. | | 8.1 General aspects – LST coverage | ξ | | | | | | | | | 8.2 Pooled observing | 9 | | | | | | | Contents | | 8.3 Service observing | 10 | | | | | | | Officerius | | 8.4 Remote observing | 10 | | | | | | 1 | The Telescope | 1 | | | | | | | | | 1.1 Pointing and Focusing | 1 | 1 The Telescope | | | | | | | | 1.2 Wobbling Secondary | 1 | 1 The Telescope | | | | | | | | 1.3 Telescope beam widths and efficiencies | 2 | This section gives a brief description of the 30-meter | | | | | | | 2 | Frontends | 2 | telescope characteristics. A more detailed summar | | | | | | | | 2.1 EMIR | 2 | is available on the IRAM web pages. | | | | | | | | 2.2 NIKA2 | 5 | | | | | | | | | | | 1.1 Pointing and Focusing | | | | | | | 3 | Backends | 6 | The telescope absolute rms pointing accuracy is b | set_ | | | | | | | 3.1 FTS | 6 | ter than 3" [1]. Observers are recommended to check | | | | | | | | 3.2 VESPA | 6 | the telescope pointing every 1 to 2 hours, depending | | | | | | | | 3.3 WILMA | 6 | on frequency, and the focus values every 2 to 4 hours | | | | | | | | 3.4 Continuum backends | 6 | and at sunrise/sunset. | | | | | | | 4 | Special observing modes | 6 | | | | | | | | | 4.1 Frequency switching | 6 | 1.2 Wobbling Secondary | | | | | | | | 4.2 XPOL | 7 | • The beam–throw is $\leq 240''$ depending on w | mh- | | | | | | | 4.3 VLBI | 7 | bling frequency. At 2 Hz, the maximum this | | | | | | | 5 | | - | is $90''$ | | | | | | | 5 | Data processing software | 7 | | | | | | | | | 5.1 EMIR | 7 | • Standard phase duration: 2 sec for spectral l | | | | | | | | 5.2 NIKA2 | 7
7 | observations, 0.26 sec for continuum obser | va- | | | | | | | 5.2.1 Online data reduction 5.2.2 Offline data reduction | 7 | tions. | | | | | | | | 5.2.2 Onime data reduction | 1 | Unnecessarily large weekler throws should | h. | | | | | | 6 | Observing time estimates | Unnecessarily large wobbler throws should avoided, since they introduce a loss of gain [2], p | | | | | | | | | 6.1 EMIR | 8 | icularly at the higher frequencies, and imply a loss | | | | | | | | 6.2 NIKA2 | 8 | of observing efficiency as the dead time increa | | | | | | | | | | | | | | | | ## 1.3 Telescope beam widths and efficiencies Updated tables of telescope efficiencies and error beam parameters between 80 and 350 GHz, as measured with the heterodyne receivers, are provided in [3]. The history of telescope main beam and aperture efficiencies, as well as the half power beam widths, are also listed on the 30m homepage. Note that the antenna point source sensitivity is a function of elevation and observing frequency [5, 6]. NIKA2 half power beam widths, beam efficiencies, antenna diagrams are described in [7]. ## 2 Frontends The small 9-pixel 1mm heterodyne array HERA is not offered any more for science observations. #### 2.1 EMIR Overview: The spectral line receiver EMIR (Eight MIxer Receiver) operates in the 3, 2, 1.3 and 0.9 mm atmospheric windows (Fig. 1). These four bands are designated as E090, E150, E230, and E330 according to their approximate center frequencies in GHz. Each band provides two orthogonal linear polarization channels tuned to the same frequency as they share a single common local oscillator. The eight individual receivers of EMIR are very well aligned with offsets below 2" between bands and below 1" between polarizations of any one band. EMIR offers very competitive noise temperatures and wide bandwidths. All EMIR bands are equipped with dual sideband (2SB) mixers that offer 8 GHz of instantaneous bandwidth per sideband and per polarization (Figs. 2, 3). Table 1 lists the main characteristics of the EMIR receiver. A thorough description of the EMIR receiver is available in Carter et al. [8], and its users guide is available at the EMIR web page at: #### http://www.iram.es/IRAMES/mainWiki/ EmirforAstronomers. EMIR is equipped with NOEMA-type mixers and an ortho-mode transducer to split the two polarisations received via only one horn, leading to a perfect co-alignment of both polarisations. The new band mixer and optics extends the available frequency range down to 73 GHz (center of outer IF sub-band of 4 GHz width) without impinging on the upper frequency limit. Though the atmospheric transmission slowly degrades when going from 81 to 73 GHz due to an atmospheric oxygen line at $60 \, \mathrm{GHz}$, the atmospheric transmission hardly varies over this frequency range with respect to varying water vapour and is therefore robust against changing weather conditions. This frequency range can now be reached with excellent receiver temperatures and well determined image band rejections, allowing well calibrated observations of bright cooling lines of redshifted objects and allowing to access a number of important chemical tracers of local molecular clouds like the low lying rotational transitions of deuterated species, e.g. $\mathrm{DCO^+}$, DCN , $\mathrm{DC_3N}$, DNC , $\mathrm{N_2D^+}$, $\mathrm{CH_3OD}$, or of other heavy rotators. **Selection of EMIR bands:** A set of warm switchable mirrors and dichroic elements are used for combining EMIR beams, or for directing the beams towards calibration loads. In its simplest configuration, the warm optics unit selects a single EMIR band for observation. This mode avoids the use of slightly lossy dichroic elements and therefore offers the best receiver noise temperatures. In its dual-beam configuration, the dichroic mirrors combine the beams of two receivers such that they look at the same position on the sky and have the same focus values within 0.3 mm. The following band combinations are possible: E 090 and E 150, E 090 and E 230, or E 150 and E 330 (see Tab. 1). The combination of bands is not polarization selective, i.e. the combined beams will stay dual polarization. The loss of these dichroic mirrors, which is small over most of the accessible frequency range, increases however the receiver temperatures by 10–15 K. In September 2016, a new dichroic mirror was installed for dual-band operation of EMIR bands E090 and E230. The improved performance of the dichroic has led to much improved receiver noise temperatures above 240 GHz, now allowing e.g. for efficient, simultaneous observations of the 1-0 and 3-2 transitions of HCN, HNC, HCO⁺. So far, the lowest frequency that can be tuned at the center of the lower outer 4 GHz band is 73 GHz. This is 9.43 GHz below the local oscillator frequency at 82.43 GHz. The lower edge of the FTS at 50 kHz resolution is 10.39 GHz below the local oscillator, at 72.04 GHz (Fig. 3). At the end of the current summer semester 2021, the 15.68 GHz oscillator used for folding the outer E090 bands will be replaced by a 16 GHz oscillator. This setup has already been successfully tested on IRC+10216. The IF center for the outer bands will increase from 9.43 to 9.75 GHz as the frequency Figure 1: Atmospheric transmission at the 30m site between 60 and 400 GHz for 2 and 4 mm of precipitable water vapor, derived from the ATM model. The EMIR bands are indicated. coverage is extended by 320 MHz (Fig. 2). And, as the local oscillator is unchanged, the new center of the lower outer 4 GHz band is 72.68 GHz and the new lower edge of the FTS at 50 kHz resolution is 71.72 GHz. This shift has two major advantages. It will be possible to observe the DCO⁺ 1–0 line at 72.039 GHz with the FTS at 50 kHz resolution, which was previously not possible. The width of the sidebands increases from 7.78 to 8.1 GHz, with IF frequencies 3.95 to 12.05 GHz, and which are covered by the FTS in low resolution mode. This range is larger than the 7.9 GHz gap between the sidebands, now allowing to cover 32 GHz continuously with two receiver setups. Calibration Considerations: EMIR has its own calibration system. The external warm optics provides ambient temperature loads and mirrors reflecting the beams back onto the 15 K stage of the cryostat. This system is expected to be very reliable and constant over time. The absolute calibration accuracy is around 10% or better depending on the band considered. All EMIR bands are equipped with tunerless sideband separation mixers, allowing simultaneous observations of both sidebands in separate IF bands. These mixers have been characterized in the laboratory for their image rejection and are expected to have the same performance on site (about $-13\,\mathrm{dB}$). Filters have been installed in the Local Oscillator (LO) chains of the EMIR bands E 090 and E 150 which successfully suppress unwanted LO harmonics that had caused ghost lines. Few ghost lines have also been detected in the E 230 band and a filter is in preparation. Doppler—tracking and velocity scale: It is common practice at radio observatories to correct the frequency of an observation for the strongly time variable velocity of the Observatory with respect to the solar system barycenter. This guarantees that lines observed near the Doppler—tracked frequency, usually the band center, always have the correct barycentric velocity, independent of the time of observation. At the 30m, the local oscillator and its synthesizers are constantly adjusted during observations to track the changing Doppler factor for one spectral line with its rest frequency. This causes a slight shift of lines observed simultaneously at a different frequency. This shift is proportional to the frequency difference and the Doppler factor. CLASS Four EMIR bands: E090 E150 E230 E330 Each band is dual-polarization: Horizontal Vertical (same local oscillator, same frequency ranges) Figure 2: Visual overview of EMIR bands. Eight sub-bands can be transported to backends for a total of 32 GHz instantaneous bandwidth. Frequencies shown above the frequency scale indicate the central frequencies of the (sub-)bands. Frequencies at the sideband edges give the frequency coverage of the backends. Frequency ranges planned for the upcoming winter semester 2021/22 when the edges of the E090 lower outer and upper outer bands shall be extended by 320 MHz, as described in the text. Figure 3: Same figure as the previous one, but showing the present frequency coverage, valid till end of the current summer semester 2021. corrects for this shift by adapting the spectral resolution [9]. Connection to backends: The IF transport system consists of eight IF cables, each with a 4 GHz bandwidth, thus providing a total bandwidth of 32 GHz. This bandwidth can be entirely covered by Table 1: EMIR Frontend characteristics foreseen for this semester. The sky frequency range, $F_{\rm sky}$, refers to the center of the outer IF sub-bands. The lower (LSB) and upper (USB) sideband frequency range is also specified. 2SB stands for dual sideband mixers, and H/V for horizontal and vertical polarizations. $T_{\rm sb}$ and $T_{\rm db}$ are the SSB receiver temperatures in single— and dual—band observations, respectively, with $T_{\rm db}$ including a 15 K noise contribution from the dichroics. The standard frequency range of the E 330 band can be extended to 375 GHz with the YIG Local Oscillator, on a shared-risk basis. The nominal frequency range of E 150 can be extended to 184 GHz with good performances of receiver temperatures and sideband ratios but the calibration around the atmospheric water line at 183.31 GHz would require special care. For the winter semester 2021/22 it is planned to extend the lower outer and upper outer E090 band edges by 320 MHz (cf. Fig. 2). | EMIR | F_{sky} | mixer | polari- | bandwidth | $T_{\rm sb}$ $G_{\rm im}$ | | combinations | | | $T_{ m db}$ | |-------|-----------------|-------|---------|----------------|---------------------------|------|-----------------|------|-----------------|-------------| | band | GHz | type | zation | GHz | K | dB | $\mathrm{E}0/2$ | E1/3 | $\mathrm{E}0/1$ | K | | E 090 | 73 - 117 | 2SB | H/V | 8 | 50 | > 10 | X | | X | 65 | | (LSB) | 73 - 97 | | | | | | | | | | | (USB) | 89 - 117 | | | | | | | | | | | E 150 | 125 - 184 | 2SB | H/V | 8 | 50 | > 10 | | X | X | 65 | | (LSB) | 125 - 168 | | | | | | | | | | | (USB) | 141 – 184 | | | | | | | | | | | E 230 | 202 - 274 | 2SB | H/V | 8 | 80 | > 10 | X | | | 95 | | (LSB) | 202 - 263.5 | | | | | | | | | | | (USB) | 217 - 274 | | | | | | | | | | | E 330 | 277 - 350 (375) | 2SB | H/V | 8 | 80 | > 10 | | X | | 95 | | (LSB) | 277 - 335 | | | | | | | | | | | (USB) | 293 - 350 (375) | | | | | | | | | | the FTS units, within limitations, at a spectral resolution of 200 kHz (see the backends section below for details). An **IF** switch **box** in the receiver cabin is used to select 8 EMIR channels of 4 GHz bandwidth each. The design of the box allows the selection of all commonly used combinations of EMIR bands. A detailed description of the (im)possible sub-band combinations is available on the EMIR homepage. ASTRO: EMIR frequency setups can be prepared using a set of commands in ASTRO\PICO. These take into account the available frequency limits, band combinations, and spectrometers, and plot the covered frequency ranges together with known spectral lines, taking into account source velocities or redshifts. Examples are given here, but see also the online help. Please use the jul21b version (or later) of GILDAS to allow for the new EMIR E090 frequency ranges described above. The command OBS PICO 2016 will use the current, old setup, while OBS PICO 2021 will use the new frequency coverage. The following small procedure gives an example: observatory PICO 2021 set lines on set frequency rest IF1 EMIR 72.68 LO baseband backend FTS NARROW #### 2.2 NIKA2 NIKA2 is a dual-band camera working simultaneously at 1 and 2 mm wavelengths. It comprises three arrays of Kinetic Inductance Detectors (KIDs), 2×1140 pixels at 1 mm and 616 pixels at 2 mm. NIKA2 images an instantaneous circular field-of-view (FoV) of 6.5' in diameter. It exhibits half power beam widths (HPBW) angular resolutions of $\sim 11''$ and 17.5'' at respectively 1 and 2 mm. Regarding sensitivities, the noise equivalent flux densities (NEFD) are 33 and 8 mJy \sqrt{s} at 1 and at 2 mm, respectively. Calibration strategies and commissioning results have been published in [7]. See also the NIKA2 home page, http://www.iram.es/IRAMES/mainWiki/Continuum/ NIKA2/Main which also links to the observing time estimator. Information on the observing modes offered for NIKA2 and examples of the observing scripts is offered here. In particular, we recommend in general to make sure that the scan sizes along the scanning direction are large enough, i.e. at least: FoV + $2 \times \text{HPBW}$ + (source size above the noise) + (2s * scan speed). The third term in the sum makes sure that KIDs instabilities are properly corrected by data reduction. The fourth term is added because known tracking deviations of the 30m telescope can hinder the quality of data records, up to 2s after the beginning of each sub-scan. Perpendicularly to the scan direction, there is no minimum size limit. Note that the size computed in this way is the Delta(x) described in the exposure time calculator documentation, and not the size of the final map. The latter is larger by one FoV size. NIKA2 1 mm polarimetry is yet being commissioned, and is not yet offered to the community for the upcoming semester. #### 3 Backends The following three spectral line backends can be individually connected to any EMIR band. Specific documentation on the backends available at the 30-meter telescope can be found on the wiki page at: http://www.iram.es/IRAMES/mainWiki/Backends #### 3.1 FTS The Fast Fourier Transform Spectrometers, FTS, can be connected to EMIR. It consists of a series of 24 FTS modules purchased from Radiometer Physics (Klein et al. [10, 11]). All FTS units work either at 200 kHz resolution or 50 kHz resolution. It is not possible to set them individually to different resolutions. At 200 kHz resolution, the 24 units provide 32 GHz of instantaneous bandwidth where each block of 3 FTS units covers a contiguous 4 GHz band of EMIR. At 50 kHz resolution, 3 FTS units cover the inner 1.8 GHz of the 4 GHz EMIR bands (see Fig. 2 for the exact frequency coverage). Note that spectra may show platforming between the FTS units. For deep integrations on faint broad lines, we recommend to use WILMA in parallel. #### 3.2 VESPA The Versatile Spectrometric and Polarimetric Array can be connected to EMIR. It is also used for polarimetry measurements (see Polarimetry section below). When connected to a set of 4 IF channels from EMIR, VESPA typically provides up to 12 000 spectral channels (up to 18 000 channels are possible in special configurations). Nominal spectral resolutions range from $3.3\,\mathrm{kHz}$ to $1.25\,\mathrm{MHz}$. Nominal bandwidths are in the range 10 to 512 MHz. VESPA basebands can be offset from band center by up to $\pm 250\,\mathrm{MHz}$. The many VESPA configurations and user modes are summarized in the VESPA users guide [17]. #### 3.3 WILMA The wideband autocorrelator WILMA consists of 18 units. Each unit provides 512 spectral channels, spaced out by 2 MHz and thus covering a total bandwidth of 1 GHz. A subset of 16 units can also be connected to EMIR covering a bandwidth of 4×4 GHz at a 2 MHz resolution. A technical overview of the architecture of WILMA is available at the following URL: http://www.iram.fr/IRAMFR/TA/backend/veleta/ wilma/index.htm #### 3.4 Continuum backends The broad band continuum backend bbc with 8 GHz width, fully exploiting the bandwidths of EMIR, is available. A narrow band continuum backend nbc with 1GHz width is available for EMIR. These continuum backends are mostly used for pointing and focus observations. They have been successfully used for flux monitoring observations of quasars (cf. e.g. [12]) and for observing in addition their linear and circular polarisations (cf. e.g. [13]). In a dedicated application, bbc has also been used for monitoring of pulsars (cf. e.g. [14]). # 4 Special observing modes #### 4.1 Frequency switching Frequency switching is available for EMIR. This observing mode is interesting for observations of narrow lines where flat baselines are not essential. Certain limitations exist with respect to maximum frequency throw (≤ 45 km/s), backends, phase times etc.; for a detailed report see [15]. This report also explains how to identify *mesospheric lines* which may easily be confused in some cases with genuine astronomical lines from cold clouds. #### 4.2 XPOL Polarimetric observations can be made using a dual-polarization band of EMIR connected to VESPA in a setup designated as XPOL [16]. XPOL generates simultaneous spectra of all 4 Stokes parameters. The following combinations of spectral resolution (kHz) and bandwidth (MHz) are available: 40/120, 80/240, and 320/480. More complex observing modes where VESPA is split into two bands are also possible (see the VESPA user guide [17]). A technical description of XPOL, along with sample observing scripts and beam maps, are available on a new webpage at: #### http://www.iram.es/IRAMES/mainWiki/ PolarimetryforAstronomers XPOL profits from the improved performance of EMIR in several respects: smaller or negligible phase drifts, small and stable offsets between the two polarizations, and negligible decorrelation losses. The alignment between both polarisations of the $3\,\mathrm{mm}$ band E 090 is perfect after the installation of an ortho-mode transducer with a single horn. The presence of polarised sidelobes makes observations of extended sources complicated as those sidelobes rotate with elevation, possibly because of the off-axis installation of EMIR. Proposals for observation of extended sources should demonstrate that their observations are feasible in the presence of the known sidelobes. The 3mm instrumental circular polarisation has increased after the installation of new receiver cabin optics in April 2015 and after the installation of NIKA2 in October 2015. This can be calibrated in continuum observations, but strongly hinders spectroscopic XPOL observations to measure the Zeeman effect. Details of the ongoing investigation are presented here. Potential XPOL users are asked to contact Gabriel Paubert (paubert@iram.es). #### 4.3 VLBI The 30-meter telescope is open for $3\,\mathrm{mm}$ VLBI proposals. VLBI proposals for $3\,\mathrm{mm}$ shall be submitted via the NRAO submission tool. Links are provided at the GMVA Website. ### 5 Data processing software #### 5.1 EMIR CLASS and GREG are the two main GILDAS software packages¹ available for off-line data reduction of EMIR continuum and spectral-line data. MRTCAL is a new GILDAS software package to calibrate EMIR data. Data processing at the telescope was switched from MIRA to MRTCAL in February 2017 for standard spectroscopic EMIR data. For the moment, polarimetry (XPOL) and continuum (pointing, focus, skydip) data will continue to be automatically calibrated with MIRA. As soon as possible, these will also be calibrated by MRTCAL. As usual, only one version of the automatically calibrated CLASS files is delivered to the observer. The MRTCAL package has been distributed in the standard GILDAS distribution, since the jun16 version. The development team nevertheless requires to upgrade your GILDAS version to feb17 (or a more recent version), as bugs of MRTCAL were only fixed starting with this version. While still distributed for some time in the GILDAS distribution, the MIRA package will not be supported anymore for standard spectroscopic data. MRTCAL was first devised to give a higher calibration accuracy. In particular, the calibration is now a function of the RF/IF frequency with a determination of the calibration parameters, e.g., $T_{\rm sys}$, typically every 20 MHz. This particularly improves the calibration in the vicinity of atmospheric absorption lines. MRTCAL was also revised to be efficient. It is fast, in preparation of the arrival of the next generation of multi-beams receiver at the 30-meter telescope. The current speed limits are the reading and writing of the data on disk. MRTCAL is able to calibrate data sets that do not fit in RAM memory. MRTCAL documentation includes a quickstart tutorial, the user manual, the developer manual, and an overview document. #### 5.2 NIKA2 #### 5.2.1 Online data reduction The PIIC-monitor software for NIKA2 is used as real-time monitor for a first data assessment, and in particular to display pointing and focus results. PIIC uses the most recent 225 GHz atmospheric opacities measured by the taumeter to obtain a first, rough calibration to the Jy/beam scale. #### 5.2.2 Offline data reduction PIIC is also available for offline data reduction. It can be downloaded via the PIIC home page. PIIC is part of GILDAS and is developed and maintained by ¹http://www.iram.fr/IRAMFR/GILDAS IRAM. The code and calibration files (KID geometry, flux calibration factors, flagging, sky opacities, etc.) are regularly updated. We therefore advice to check for new versions from time to time. A summary of the calibration accuracy for all science runs is also available. During an observing run, a preliminary set of calibration products will be made available for a first, quick reduction. However, it may take several weeks after a pool week, during which the calibration scans are analyzed, before final calibration products become available to the users. As in the past years, the IDL data pipeline, which has been developed by the NIKA2 consortium, may be used for data reduction. However, there will be no IRAM user support. The instrumental bandpasses [7] are available on the NIKA2 home page here together with typical atmospheric transmission curves. # 6 Observing time estimates #### 6.1 EMIR For EMIR, the concise on-line time estimator shall be used, which is available at the following URL: http://www.iram-institute.org/EN/content-page-150-7-55-150-0-0.html If very special heterodyne observing modes are proposed which are not covered by the Time Estimator, proposers must give sufficient technical details so that their time estimate can be reproduced. In particular, the proposal must give values for $T_{\rm sys}$, the spectral resolution, the expected antenna temperature of the signal, the signal/noise ratio that is aimed for, all overheads and dead times, and the resulting observing time. For summer semesters, proposers should base their time request on normal Summer conditions, corresponding to 7 mm of precipitable water vapor (pwv). And for winter semesters, proposers should base their time request on normal winter conditions, corresponding to 4 mm of precipitable water vapor (pwv). All over the year, conditions during afternoons can be degraded due to anomalous refraction. The observing efficiency is then reduced and the flux/temperature calibration is more uncertain than the typical 10 percent. Proposers requesting observations which need pwv values lower than 7 mm (for summer semesters) or 4 mm (for winter semesters) should enter the maximum acceptable pwv value on the PMS proposal page. Very demanding proposals, e.g. observations using E 330 above 300 GHz, or some very deep and/or high frequency continuum observations, may need pwv values ≤ 2 mm. These observations will be scheduled in a pool. #### 6.2 NIKA2 The NIKA2 time estimator python script is available on the NIKA2 home page together with a user document. # 7 Proposal preparation #### 7.1 Technical pre-Screening All proposals will be reviewed for technical feasibility in parallel to being made available to the members of the program committee. Please help in this task by submitting technically precise proposals. Note that your proposal must be complete and exact: the source position and velocity, as well as the requested frequency setup must be correctly given. #### 7.2 Duplication Check In order to ensure the most efficient use of the 30meter telescope, proposals may be checked for duplication during the technical pre-screening. Unless scientifically justified, proposals that aim to reach the same goals as programs observed in previous semesters with similar or equivalent observing configurations with respect to target selection, observing frequency, angular resolution and sensitivity may not be accepted. Header information of 30-meter observations later than September 2009 can be found in the CDS VizieR catalogue (Centre de Données astronomiques de Strasbourg). In the future, PIs will be able to perform a duplication check of their proposals also against programs observed in more recent semesters. However, for this deadline we kindly ask PIs to contact the scheduler, kramer@iram.fr, in case of doubts concerning duplication of observing programs from the last year. #### 7.3 Protected Fields Investigators should take note of the following protections put in place for guaranteed-time observing (GTO) programs when preparing their proposals: The NIKA 2 protected GTO observing fields are fenced against new continuum driven observations with NIKA 2 and NOEMA. The field Figure 4: Number of observing hours of projects versus LST range for a typical, recent winter semester. The Orion and Galactic Center (GC) LST ranges are marked. coordinates, sizes, project abstracts are given on the NIKA 2 homepage. All MIOP observing sources and fields are protected against any new observing requests for which the science goals are similar to those of the respective MIOP; click on the following MIOP homepage link for details on the protected fields and for the individual MIOP abstracts. Possible conflicts between GTO programs and new proposals will be flagged during the technical prescreening and may result in the (partial or complete) rejection of the proposal. Investigators are hence expected to check their target coordinates against the protected GTO fields (see links given above) when preparing their proposal. The conflicted source(s) should be retracted or exchanged if science goals are identical with those of the GTO programs. In case a conflicted source is wished to be kept it must be demonstrated in the proposal that the scientific goals are significantly different from the GTO programs. For the upcoming wintersemester, PMS will issue a general information when uploading or adding new sources to the proposal. The information includes the links to the list of the coordinates for each GTO field, ordered by project name or RA. In the future, a direct coordinate check will be implemented for these GTO fields within PMS. # 8 Organizational aspects ## 8.1 General aspects – LST coverage Over the past years, the 30-meter telescope has received an increased number of Galactic proposals aiming at the Orion and Galactic Center regions. The corresponding LST ranges 2h to 9h and 15h to 20h are oversubscribed, while the observing pressure is much less for the **LST range 10h to 15h** (Fig. 4). #### 8.2 Pooled observing The pooled observing mode offers a flexible way of scheduling weather demanding projects. Contrary to the traditional scheduling where a fixed time slot is reserved in advance for a given project, pooled projects are scheduled dynamically during pool sessions, typically one weeks long, to better exploit the best weather conditions at the Pico Veleta. For instance, accepted EMIR high frequency $(\lambda \leq 1.3 \,\mathrm{mm})$ proposals may be pooled into the "1 mm weather" queue, in which case they would be observed when the atmospheric precipitable water vapor column (pwv) falls below 5 mm. Similarly, projects requesting less than 2 mm of pwv are usually pooled into the "best weather" queue. A correct specification of the pwv on the technical summary page is therefore very important. Heterodyne proposals which are particularly weather-tolerant are used as backup projects during pool sessions to fill in the gaps between periods of good weather conditions. Pooled observations are offered since 2002 at the 30-meter telescope, and they have proven to be a very efficient and successful mode of observations. Participation in the pools may be requested explicitly by ticking the appropriate box on the proposal form. The 30m scheduler may also select projects that would benefit most from the pool scheduling flexibility, or are otherwise well suited to be included in the pools. Pooled observations should be simple and straightforward to carry out, using only standard setups. For instance polarization measurements using XPOL are not appropriate for pool observing. Proposals participating in the pools will be observed by the PIs and Co-Is of participating projects, and the IRAM staff. The organization of the observing pools is described in more details on the IRAM 30-meter web site. Questions concerning the pool organization can be directed to the scheduler (kramer@iram.fr) or to the pool coordinators. #### 8.3 Service observing To facilitate the execution of short (≤ 8 h) programs, we propose "service observing" for some easy to observe programs with only one set of tunings. Observations are made by the local staff using precisely laid—out instructions by the principal investigator. For this type of observation, we request an acknowledgement of the IRAM staff member's help in the forthcoming publication. If you are interested in this mode of observing, specify it as a "special requirement" in the proposal form. IRAM will then decide which proposals can actually be accepted for this mode. #### 8.4 Remote observing Remote observations with the 30-meter telescope are routinely possible. Due to the COVID-19 pandemic all observations have in fact been conducted in remote mode since March 2020. On-site visitor observations may possibly not be feasible in the coming semester. In any case, remote visitor observations are strongly recommended as the pandemic is ongoing. These observations are restricted to experienced 30-meter observers only. Hence, we strongly recommend that inexperienced PIs include experienced 30-meter observers in their teams. As a safeguard, please email observing instructions and macros to the Astronomer of Duty (AoD) and/or operator. A detailed user guide for remote observing, which has recently been updated, is available via this link for internal users or on request. It is recommended to test the connections via the vncviewers well in advance of the scheduled observing run, during office hours, but not on Tuesday maintenance days. Reminders: For any questions regarding the telescope and the control programs, we recommend to consult the summary of telescope parameters and the NCS web pages. The applied calibration procedure for heterodyne observations is explained in in a dedicated report [18]. A new report describing calibration with MRTCAL is in preparation. More reports and publications related to the calibration are compiled here: http://www.iram.es/IRAMES/mainWiki/CalibrationPapers The astronomer on duty may be contacted for any special questions concerning the preparation of an observing run. The AoD schedule is available at http://www.iram.es/IRAMES/mainWiki/ AstronomersOnDutySchedule # References - [1] The Pointing of the IRAM 30-meter Telescope A. Greve, J.-F. Panis, and C. Thum 1996, A&A Suppl. 115, 379 (here) - [2] Antenna Gain depending on Wobbler Tilt, J. Penalver, IRAM Tech. Report 2016. (here) - [3] Improvement of the IRAM 30-meter telescope beam pattern, C. Kramer, J. Peñalver, A. Greve 2013, (here). - [4] The beam pattern of the IRAM 30-meter Telescope, A. Greve, C. Kramer, and W. Wild 1998, A&A Suppl. 133, 271, (here). - [5] The gain-elevation correction of the IRAM 30-meter Telescope, A. Greve, R. Neri, and A. Sievers 1998, A&A Suppl. 132, 413, (here). - [6] The gain-elevation correction of the IRAM 30meter Telescope – revisited J. Penalver 2012, IRAM Tech. Report, (here). - [7] Calibration and performance of the NIKA2 camera at the IRAM 30-m Telescope Perotto et al. 2020, A&A, 637, 71. (here) - [8] The EMIR multi-band mm-wave receiver for the IRAM 30-meter telescope, M. Carter, B. Lazareff, D. Maier, J.-Y. Chenu, A.-L. Fontana, Y. Bortolotti, C. Boucher, A. Navarrini, S. Blanchet, A. Greve, D. John, C. Kramer, F. Morel, S. Navarro, J. Pealver, K. Schuster and C. Thum A&A, 538, A89, 2012, (here). - [9] Accurate line center frequencies Report -IRAM 30-meter telescope, Christof Buchbender, Carsten Kramer, Albrecht Sievers, Gabriel Paubert 2011, IRAM Tech. Report (here). - [10] The Next Generation of Fast Fourier Transform Spectrometer Klein B., Kramer I, Hochgurtel S., Güsten R., Bell A., Meyer K., and Chetik V. 19th International Symposium on Space Terahertz Technology, Groningen, 28-30 April 2008, (here). - [11] Fast Fourier Transform Spectrometer Klein B., Kramer I, Hochgurtel S., Güsten R., Bell A., Meyer K., and Chetik V. 20th International Symposium on Space Terahertz Technology, Charlottesville, 20-22 April 2009, (here). - [12] The F-GAMMA programme: multi-frequency study of active galactic nuclei in the Fermi era. Programme description and the first 2.5 years of monitoring, Fuhrmann et al. 2016, A&A, 596, A45 (here) - [13] POLAMI: Polarimetric Monitoring of AGN at Millimetre Wavelengths - I. The programme, calibration and calibrator data products I. Agudo, C. Thum et al. 2018, MNRAS, 474, 1427 (here) - [14] Simultaneous multifrequency radio observations of the Galactic Centre magnetar SGR J17452900, Torne et al. 2015, MNRAS, 451, L50 (here) - [15] Frequency switching at the 30-meter telescope C. Thum, A. Sievers, S. Navarro, W. Brunswig, J. Peñalver 1995, IRAM Tech. Report 228/95. (here) - [16] XPOL The Correlation Polarimeter at the IRAM 30-meter Telescope, Thum et al. 2008, PASP, 120, 777 (here) - [17] The VESPA backend, G. Paubert, IRAM Newsletter 54 (December 2002) and Short guide to VESPA [18] Calibration of spectral line data at the IRAM 30-meter telescope, Carsten Kramer, 1997 (here)