A Sightseeing Tour of mm Interferometry

Jérôme PETY
(IRAM & Obs. de Paris)

7th IRAM Millimeter Interferometry School
Oct. 4 - Oct. 8 2010, Grenoble
Towards Higher Resolution:
I. Problem

Telescope resolution:

- $\sim \lambda/D$;
- IRAM-30m: $\sim 11'' \@ 1\mathrm{mm}$.

Needs to:

- increase D;
- increase precision of telescope positionning;
- keep high surface accuracy.

\Rightarrow Technically difficult (perhaps impossible?).
Towards Higher Resolution:
II. Solution

Aperture Synthesis: Replacing a single large telescope by a collection of small telescope “filling” the large one.
⇒ Technically difficult but feasible.

Vocabulary and notations:
Baseline Line segment between two antenna.

b_{ij} Baseline length between antenna i and j.

Configuration Antenna layout (e.g. compact configuration).

D configuration size (e.g. 150 m).

Primary beam resolution of one antenna (e.g. 27″ @ 1 mm).

Synthesized beam resolution of the array (e.g. 2″ @ 1 mm).
Parenthesis: PSF = Diffraction Pattern = Beam Pattern

Combination of:

- Antenna properties;
- Optical system (i.e. how the waves are feeding the receiver).

Typical kind:

Optic/IR Airy function;
Radio Gaussian function.

(Lecture by P. Hily-Blant)
Young’s Experiment

Setup

Lens ⇒ Fraunhofer conditions (i.e. Plane waves as if the source were placed at infinity).

Obtained image of interference: fringes

\[I(x) = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos\left(\frac{bx}{\lambda}\right) \]

with

\[\begin{align*}
\lambda & \text{ Source wavelength; } \\
\shortrightarrow b & \text{ Distance between the two Young’s holes; } \\
x & \text{ Distance from the optical center on the screen. }
\end{align*} \]
Effect of the Antenna Diffraction Pattern

\[I(x) = B(x) \cdot \left\{ I_1 + I_2 + 2 \sqrt{I_1 I_2} \cos \left(\frac{bx}{\lambda} \right) \right\} \]
Effect of the Source Hole Size:
I. Description

Hypothesis: Monochromatic source (but not a laser).

Description:

- The Source Hole Size is increased.
- Everything else is kept equal.
Effect of the Source Hole Size:

II. Results

Fringes disappear! \Rightarrow

Fringe contrast is linked to the spatial properties of the source.

$$I(x) = I_1 + I_2 + 2\sqrt{I_1 I_2} |C| \cos \left(\frac{bx}{\lambda} + \phi_C \right)$$

with $|C| = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$
Effect of the Distance Between Young’s Holes:
I. Description

Hypothesis:

- Monochromatic source (but not a laser).
- The source hole is a circular disk.

Description:

- The distance between the two Young’s holes is increased.
- Everything else is kept equal (in particular the hole size).
Effect of the Distance Between Young’s Holes:

II. Results

\[
I(x) = I_1 + I_2 + 2\sqrt{I_1I_2}|C| \cos\left(\frac{bx}{\lambda} + \phi_C\right) \quad \text{with} \quad |C| = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}
\]
II. Results (Continued)

\[I(x) = I_1 + I_2 + 2\sqrt{I_1 I_2}|C| \cos \left(\frac{bx}{\lambda} + \phi_C \right) \quad \text{with} \quad |C| = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}} \]
Measured Curve = 2D Fourier Transform of the Source

Source = Uniformly illuminated disk.

\[\frac{J_1(b)}{b} \xrightarrow{2D\ FT} \text{Heaviside}(\theta) \]
Theoretical Basis of the Aperture Synthesis

The van Citter-Zernike theorem

\[V_{ij}(b_{ij}) = C_{ij}(b_{ij}).I_{\text{tot}} \xrightarrow{\text{2D } \mathcal{F}} B_{\text{primary}}.I_{\text{source}} \]

- Young’s holes = Telescopes;
- Signal received by telescopes are combined by pairs;
- Fringe visibilities are measured.

⇒ One Fourier component of the source (i.e. one visibility) is measured by baseline (or antenna pair).
 ⇒ Each baseline length \(b_{ij} \) = a spatial frequency.
 ⇒ Convention: Spatial frequencies are measured in meter.
An Example: The PdBI

Number of baselines: \(N(N - 1) = 30 \) for \(N = 6 \) antennas.

Convention: Fourier plane = \(uv \) plane.
Each Visibility is a Weighted Sum of the Fourier Components of the Source

\[V_{ij}(b_{ij}) = \left\{ \tilde{B}_{\text{primary}} \ast \tilde{I}_{\text{source}} \right\}(b_{ij}) \]

with \(\tilde{B}_{\text{primary}} \) a Gaussian of FWHM=15 m.

\[V_{ij}(b_{ij}) \overset{2D \text{ FT}}{\rightarrow} B_{\text{primary}} \cdot I_{\text{source}} \]

⇒ \{Indirect information on the source (important for mosaicing).\}
Mathematical Properties of Fourier Transform

1. Fourier Transform of a product of two functions
 $= \text{convolution of the Fourier Transform of the functions:}$

 If $(F_1 \xleftrightarrow{\text{FT}} \tilde{F}_1 \text{and} F_2 \xleftrightarrow{\text{FT}} \tilde{F}_2)$, then $F_1.F_2 \xleftrightarrow{\text{FT}} \tilde{F}_1 \ast \tilde{F}_2$.

2. Sampling size $\xleftrightarrow{\text{FT}}$ Image size.

3. Bandwidth size $\xleftrightarrow{\text{FT}}$ Pixel size.

4. Finite support $\xleftrightarrow{\text{FT}}$ Infinite support.

5. Fourier transform evaluated at zero spatial frequency
 $= \text{Integral of your function.}$

 $V(u = 0, v = 0) \xleftrightarrow{\text{FT}} \sum_{ij \in \text{image}} I_{ij}$.
Each Visibility is a Weighted Sum of the Fourier Components of the Source

\[V_{ij}(b_{ij}) = \{ \tilde{B}_{\text{primary}} \ast \tilde{I}_{\text{source}} \} (b_{ij}) \]

with \(\tilde{B}_{\text{primary}} \) a Gaussian of FWHM=15 m.

\[\Rightarrow \{ \text{Indirect information on the source} \} \]

(important for mosaicing).
An Example: The PdBI (Cont’d)

Number of baselines: \(N(N - 1) = 30 \) for \(N = 6 \) antennas.

Convention: Fourier plane = \(uv \) plane.

Incomplete \(uv \) plane coverage ⇒ difficult to make a reliable image (Lectures by A. Castro–Carrizo, J. Pety and F. Gueth).
Earth Rotation and Super Synthesis

Precision: Spatial frequencies = baseline lengths projected in a plane perpendicular to the source mean direction.

\[
\text{Delay} = b \cdot \frac{s}{c}
\]
Earth Rotation and Super Synthesis

Precision: Spatial frequencies = baseline lengths projected in a plane perpendicular to the source mean direction.

Advantage: Possibility to measure different Fourier components without moving antennas!
Earth Rotation and Super Synthesis

Precision: Spatial frequencies = baseline lengths projected in a plane perpendicular to the source mean direction.

Advantage: Possibility to measure different Fourier components without moving antennas!
Earth Rotation and Super Synthesis

Precision: Spatial frequencies = baseline lengths projected in a plane perpendicular to the source mean direction.

Advantage: Possibility to measure different Fourier components without moving antennas!
Precision: Spatial frequencies = baseline lengths projected in a plane perpendicular to the source mean direction.

Advantage: Possibility to measure different Fourier components without moving antennas!
Earth Rotation and Super Synthesis

Precision: Spatial frequencies = baseline lengths projected in a plane perpendicular to the source mean direction.

Advantage: Possibility to measure different Fourier components without moving antennas!

Sampling in the uv plane

Associated image of a point source
Earth Rotation and Super Synthesis

Precision: Spatial frequencies = baseline lengths projected in a plane perpendicular to the source mean direction.

Advantage: Possibility to measure different Fourier components without moving antennas!
Earth Rotation and Super Synthesis

Precision: Spatial frequencies = baseline lengths projected in a plane perpendicular to the source mean direction.

Advantage: Possibility to measure different Fourier components without moving antennas!
Earth Rotation and Super Synthesis

Precision: Spatial frequencies = baseline lengths projected in a plane perpendicular to the source mean direction.

Advantage: Possibility to measure different Fourier components without moving antennas!

A Sightseeing Tour of mm Interferometry J. Pety, 2010
Delay Correction: I. Why?

Real life: Source not at zenith.
⇒ \{ Wave plane arrives at different moment on each antenna. \}

Temporal coherence:
• \(E(t) = E_0 \cos(\omega t + \psi) \)
• Temporally Incoherent Source = random phase changes.
• Coherence time: mean time over which wave phase = constant.

\[\psi = 0 \quad \psi = 1.5 \quad \psi = 0.5 \]

Problem: (Coherence time \(\lesssim \) delay) ⇒ fringes disappear!

A Sightseeing Tour of mm Interferometry

J. Pety, 2010
Delay Correction: II. Earth rotation

Earth rotation:

- **Advantage:** Super synthesis;
- **Inconvenient:** Delay correction varies with time!

\[\text{Delay} = \frac{b \cdot s}{c} \]
Real life: Observation of finite bandwidth.
⇒ polychromatic light.

Perfect delay correction
⇒ White fringes in 0.
Delay Correction: III. Finite Bandwidth

Real life: Observation of finite bandwidth.
⇒ polychromatic light.

Perfect delay correction
⇒ White fringes in 0.

Worse and worse delay correction.
⇒ Translation of the fringe pattern.
⇒ Fringes seem to disappear.
Delay Correction: III. Finite Bandwidth

Real life: Observation of finite bandwidth.
⇒ polychromatic light.

Perfect delay correction
⇒ White fringes in 0.

Worse and worse delay correction.
⇒ Translation of the fringe pattern.
⇒ Fringes seem to disappear.
Delay Correction: III. Finite Bandwidth

Real life: Observation of finite bandwidth.
⇒ polychromatic light.

Perfect delay correction
⇒ White fringes in 0.

Worse and worse delay correction.
⇒ Translation of the fringe pattern.
⇒ Fringes seem to disappear.
Delay Correction: III. Finite Bandwidth

Real life: Observation of finite bandwidth. ⇒ polychromatic light.

Perfect delay correction ⇒ White fringes in 0.

Worse and worse delay correction. ⇒ Translation of the fringe pattern. ⇒ Fringes seem to disappear.

A Sightseeing Tour of mm Interferometry

J. Pety, 2010
Delay Correction: III. Finite Bandwidth

Real life: Observation of finite bandwidth.
⇒ polychromatic light.

Perfect delay correction
⇒ White fringes in 0.

Worse and worse delay correction.
⇒ Translation of the fringe pattern.
⇒ Fringes seem to disappear.
Optic vs Radio Interferometer: I. Measurement Method

Detector
- **Kind**
 - Optic
 - Radio
- **Observable**
 - Quadratic
 - Linear (Heterodyne)

Measure
- **Method**
 - Optical fringes
 - Electronic correlation
- **Quantity**
 - $|C| = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$
 - $|V| \exp(i\phi_V) = \langle E_1.E_2 \rangle$

Interferometer kind
- Additive
- Multiplicative

(Heterodyne: lectures by F. Gueth and V. Piétu)
Optic vs Radio Interferometer: I. Measurement Method

Detector

<table>
<thead>
<tr>
<th>Kind</th>
<th>Observable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optic</td>
<td>Quadratic</td>
</tr>
<tr>
<td>Radio</td>
<td>Linear (Heterodyne)</td>
</tr>
</tbody>
</table>

Measure

<table>
<thead>
<tr>
<th>Method</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical fringes</td>
<td>$</td>
</tr>
<tr>
<td>Electronic correlation</td>
<td>$</td>
</tr>
</tbody>
</table>

Interferometer kind

- Optic: Additive
- Radio: Multiplicative

Multiplicative Interferometer

Avantage: all offsets are irrelevant \Rightarrow Much easier;

Inconvenient: Radio interferometer = bandpass instrument;

\Rightarrow Low spatial frequencies are filtered out.

A Sightseeing Tour of mm Interferometry

J. Pety, 2010
Optic vs Radio Interferometer: II. Atmospheric Influence

Atmosphere emits and absorbs: (Lecture by M. Bremer).

Signal = Transmission * Source + Atmosphere.

- Optic: \(\{ \text{Source} \gg \text{Atmosphere} \} \Rightarrow \text{transparent}; \)
 \(\text{Transmission} \sim 1 \)
- Radio: \(\{ \text{Source} \ll \text{Atmosphere} \} \Rightarrow \text{fog}. \)

Good news: Atmospheric noise uncorrelated
 \(\Rightarrow \text{Correlation suppresses it!} \)

Bad news: Transmission depends on weather and frequency.
 \(\Rightarrow \text{Astronomical sources needed to calibrate the flux scale!} \)
 (Lecture by M. Krips)

Atmosphere is turbulent: \(\Rightarrow \text{Phase noise} \) (Lecture by M. Bremer).

Timescale of atmospheric phase random changes:
- Optic: 10-100 milli seconds;
- Radio: 10 minutes.

\(\Rightarrow \text{Radio permits phase calibration on a nearby point source} \)
 \((\text{e.g. quasar}). \)
Instantaneous Field of View

One pixel detector:

- Single Dish: one image pixel/telescope pointing;
- Interferometer: numerous image pixels/telescope pointing
 - Field of view = Primary beam size;
 - Image resolution = Synthesized beam size.

Wide-field imaging: ⇒ mosaicing (Lecture by F. Gueth).
Conclusion

mm interferometry:

- A bit more of theory;
- Lot’s of experimental details (e.g. lecture by F. Gueth and R. Neri).

Why caring about technical details: Some of them must be understood to know whether you can trust your data.

By the end of this week, you should be ready to use PdBI!
(Lectures by R. Neri and J. M. Winters)
Bibliography

- “Proceedings from IMISS2”, A. Dutrey Ed.

Photographic Credits

- M. Born & E. Wolf, “Principles of Optics”.
- J. W. Goodman, “Statistical Optics”.
- J. D. Kraus, “Radio Astronomy”.

A Sightseeing Tour of mm Interferometry J. Pety, 2010
Lexicon

- **Beam**: Antenna diffraction pattern.
- **Primary Beam**: Instantaneous field of view (Single-Dish Beam).
- **Synthesized Beam**: Image resolution (Interferometer Beam).
- **Configuration**: Antenna layout of interferometer.
- **Baseline**: Distance between two antenna.
- **uv-plane**: Fourier plane.
- **Visibilities**: \sim Fourier components of the source.
- **Fringe stopping**: Temporal variation of delay correction needed to avoid translation of the white fringe.
- **Heterodyne**: Principle of linear detection.
- **Correlator**: Where visibilities are measured by correlation of signal coming from pairs of antenna.