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Abstract. 
The Noise Equivalent Power (NEP) is a concept often used to quantify the 

sensitivity of a detector or the power generated by a source of noise on a detector. But 
the literature offers different definitions and different ways to calculate it. I recall here 
these definitions and the results of calculations from several authors, for the particular 
case of photon noise from background source illuminating a detector. In the second 
part of the document, starting from bases of mathematical description of random 
processes, I show the link between the different definitions of the NEP. In the third 
part, starting from the fundamental properties of boson I calculate the most general 
expression for the photon NEP, allowing to link the various expressions found in the 
literature, and understand the assumptions made for each case. 

 
 

Introduction. 
 

Definitions of NEP. 
Contrary of what could be thought regarding the wide use of the Noise Equivalent 

Power in literature to characterize the measurements limits of detectors, it is not easy 
to find a clear mathematical definition of the NEP in the literature! 

The first definition given here comes from the Federal Standard 1037C (telecom 
glossary 2000) of the United State Government. “Noise-equivalent power (NEP) is the 
radiant power that produces a signal-to-noise ratio of unity at the output of a given 
optical detector at a given data-signaling rate or modulation frequency, operating 
wavelength, and effective noise bandwidth. Some manufacturers and authors define 
NEP as the minimum detectable power per square root bandwidth [W/Hz1/2].” 
[http://www.its.bldrdoc.gov/fs-1037/fs-1037c.htm]. Although is widely used on 
internet or articles with different phrasing ([Benford] [Léna] [Goodrich] [Atis] 
[Anghel et al] [Das et al] [Besse] and others), it is surprisingly confusing by its lack of 
mathematical precision and generality. Indeed, it is not clear whether it should be 
expressed in W or W/Hz1/2, it does not give the relation between each component of 
the formula, and it is defined only for radiation detectors (for instance NEP produced 
by an electronic device can’t be defined that way).  

There is another definition coming from the theory of signal and random processes, 
which is much more general and mathematically precise, though rarely used. “Given a 
property X which may fluctuate with a finite amplitude in a finite frequency band ∆f 
and which correspond to a random ergodic process. Given a system able to measure 
this property with a defined power conversion factor called sensitivity. The Noise 
Equivalent Power of the system measuring the fluctuating property is the ratio of the 
ergodic process monolateral spectral density over the sensitivity of the system, it is 
expressed in units of W/Hz1/2.” [Leclercq, mais viens d’une autre source à retrouver 
!!!]. Although more rigorous than the previous definition, this one is tougher and uses 
terms that also need to be defined (spectral density, ergodic process, sensitivity). For 
that reason it is rarely used in the optical detector literature (or it is used in a more 
simple but less rigorous way [Dutoit] [Zweiacker]). 



One can ask whether these two definitions are equivalent or at least compatible with 
each other ? I’ll show that the first definition is actually a direct consequence of the 
second with some restrictions on the spectral density of the noise source process. 

 
Some calculations of photon noise NEP. 

There are several references in the literature that give formulas for the calculation of 
NEP from photon noise on detectors. I give here three references that are particularly 
interesting because they give different formulations, thus representative of the wide 
variety of formulations that can be found in the literature, and in addition they present 
a special interest for the specification of background limited bolometers for the IRAM 
30m telescope. 

 
1) In the book “Observational Astrophysics” [Léna], the author introduces the NEP 

in the chapter dealing with the conversion of n photons into electrons in a 
photoelectric detector. He define first the detector as a filter with a given quantum 
efficiency η and an idealized transfer function being a rectangle function Πf cutting 
off at a given frequency fc. Then he calculates the variance of the photocurrent: 

( ) ( )[ ] ( ) ( ) cfi fnndffnfnii
c

ηηηδησ 222222 =−Π+=−= ∫
+∞

∞−
 

where the bar above a letter is a mean value, δ(t) is the Dirac function, and the term in 
the integral is the filter spectral density for a poissonian stochastic process. The 
signal-to-noise ratio for an incident radiation power ( ) νν hnP = is: 
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Then he applies this calculation to the situation where the detector simultaneously 
receives photons from a faint source and from a dominating background. The 
minimum detectable signal (S/N=1) is then limited by the background fluctuations so 
that iS =σB, which is an incident power at the detector: 
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This power, referred to a unit band-pass fc=1Hz is measured in W/Hz1/2 ; it is the 
Noise Equivalent Power from the background on the detector. 

 
2) In the article “Noise Equivalent Power of background limited thermal detectors at 

submillimeter wavelengths” [Benford et al], the authors start from the mean square 
fluctuation in the number of photons detected per mode for a telescope of main beam 
efficiency ηMB(ν), a blackbody emissivity ε(ν), and an optical efficiency (product of 
optics transmission and detector absorptivity) α(ν) [Fellgett et al]: 

( )nn MBn αηεσ += 12  
Using the Bose-Einstein statistical expression for the number of photons, and 
multiplying the above expression by the energy per photon hν and the number of 
modes N, then yields the spectral density of the mean square fluctuations in the 
radiation power detected: 
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where the factor of 2 derives from the fact that a thermal detector is a square law 
detector and consequently doubles the mean square fluctuations [Robinson]. 
To calculate the total power mean square variations the authors integrate the 
expression over the frequency band of detection, and use three assumptions to 
simplify the expression: (1) the detector performance is limited by the atmosphere 
which temperature is high enough so that the Rayleigh-Jeans approximation (n ≈ 
kT/hν) can be use in the photons frequency band of the detector; (2) the detector is in 
the diffraction limited case so that the number of modes is 2 when including both 
polarization of light ; (3) the bandwidth of the instrument is narrow and the observed 
sources are smaller than the beam size so that the number of modes is independent of 
frequency. Using the first definition for the NEP given in the introduction, assuming 
that the observed source is a perfect blackbody and the atmospheric background 
contribute in both the main beam and error beam, the authors establish the NEP 
expression in the following manner: 
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The authors call this last expression the Background Radiation Equivalent Noise 
Equivalent Power, hence defined as the source noise power yielding a signal to noise 
of 1 when observing a source through the atmosphere.  

 
3) In the article “Photon noise in photometric instrument at far-infrared and 

submillimeter wavelengths” [Lamarre] the author starts also from the mean square 
fluctuations of the number of photons, but for the more general case of g cells (or 
modes or states) of the phase space (g>>1): 
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For an incident radiation characterized by a mean optical spectral power Pν measured 
by a detector with a quantum efficiency η in the frequency band ∆ν during the time t, 
the mean number of photons detected is: 
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where Qν=η⋅Pν is the mean optical spectral power of the effectively detected 
radiation. The number of modes can be written as the product of the inverse of space 
coherence ∆s by the inverse of time coherence ∆ν⋅t [Kastler ?][Mandel ?]. The 
fluctuations of the absorbed energy are then: 
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where the term m has been introduced to take into account the polarization of light in 
the number of cells available in the phase space. These photons fluctuations induce 
fluctuations on the detector signal expressed in terms of electrical NEP as: 
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where B is the equivalent bandwidth of a perfect integrator with an integration time t 
and is equal to 1/(2t) [Bracewell]. As in Benford et al, the NEP has 2 terms. The first 

one is purely poissonian (signal grows as n  and noise as n ) and can be interpreted 
as a quantum noise also called shot noise when it occurs in devices. The second term 
is the boson factor of the radiation and can be interpreted as a phenomenon of photon 
bunching or interferences of waves at the origin of the diffraction phenomena. The 
rest of the article is dedicated to a discussion about the space coherent factor. After 
giving the explicit case ∆s=c2/(ν2U) valid only when the incident radiation is 
produced by an incoherent source and is uniformly distributed over a detector which 
beam throughput (U) is large with respect to the etendue of coherence (ν2/c2), the 
author presents the semi classical theory of Hanbury Brown and Twiss (HBT) 
describing intensity interferometry in visible light [Hanbury Brown and Twiss] and 
derives a general expression for ∆s(ν), called the partial coherence factor by HBT. 
Considering the dependencies of ∆s over the system dimensions and considering the 
effect of state polarization p the author gives the general expression of the NEP: 
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This is the general expression of the electric Noise Equivalent Power created by 
incident radiations on a detector. In this expression P is the degree of polarization and 
the partial coherence factor depends on the source dimension rs, the detector 
dimension rd, the distance between the source and the detector Z, and the radiation 
wavelength λ=c/ν. 

 
One can ask whether these three different results for the photon NEP created on a 

detector are compatible with each other or not ? Do they describe the same 
characteristics or is there at least some links between them ?  
In the following part I will focus on the definition of the Noise Equivalent Power, 
then based on this definition I will show the links between the different NEP 
calculations and establish the expression(s) I’ll use from now for the specifications of 
bolometric detectors. 

 
 

Defining NEP using random process formalism. 
 
The phenomenon of noise forms the limit to the measure of everything in nature. 

Such a central problem of science has obviously been studied and formalized 
mathematically. Many books and papers deal with the theory of random process, so I 
recall here only the basics definitions that will allow to study the specific case of the 
NEP notion. These definitions are mostly from [leclercq], based on the lectures from 
[Diu][Pouvil][Puech][Borg], and [Léna]. 

Let’s call x a random (or stochastic) variable which can take the values xn or x, 
depending on they are discreet or continue, with the normalized probabilities Pn or 
density of probabilities p(x). The mathematical expectancy of any function f of the 
random variable is: 
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The mean and the variance of x are defined as: 
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where the last equality is obtain thanks to the distributive property of the integration 
and the normalization of the probabilities giving { }{ } { } { } { }cEbEaEcbEaE +=+ . 

Now let’s defined an experiment which possible results ζ have probabilities P(ζ) 
and are assigned with a function of time x(t,ζ). The family of functions created are 
called stochastic process, and the notation x(t) is used to represent this process. The 
mean, autocorrelation and autocovariance are respectively defined as: 
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where the asterisk denotes  the complex conjugate. 
The process is stationary in the simple case it is conserved in time in the probabilistic 
point of view. In other word a translation in time doesn’t change its statistics (mean, 
variance an so on). Redefining the time variables as t1=t, t2=t+τ allow to write the 
autocorrelation and the autocovariance as depending on a unique time variable (e.i. 
R(τ) and C(τ)). 

A stochastic process is ergodic when the temporal means are asymptotically equal 
to the means on all possible realizations of the process, that is to say equal to the 
mathematical expectancies: 
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The ergodicity, which implies stationarity, is obviously linked to the question of 
knowing whether the measure during a finite time of a random process is 
representative of its real physical properties. Associated to the problem of measuring 
is the inevitable process of filtering the signal. Filtering can be described in the 
frequency domain and in the time domain, and the Fourier Transform is the useful 
tool linking the two domains. 

The spectral density of a signal is the square of the magnitude of the continuous 
Fourier transform of the signal, for an ergodic process one has: 
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The equality with the Fourier transform of the autocorrelation constitutes the Weiner-
Khintchin theorem. The restriction of the spectral density to the positive frequency 
domain is called monolateral spectral density: Sx(|f|) = 2Sxx(f). 



 
Let consider a system measuring a property x likely to fluctuate with a finite 

amplitude as an ergodic process in a finite frequency band. The function linking the 
value of x to the real power dissipated into the system is the sensitivity (or power 
response) of the system to the measured property: [ ]Wunitxprx /_ . The Noise 
Equivalent Power of the process measured in the detection system is defined as the 
ratio of the square root of the monolateral spectral density in the finite frequency band 
over the system sensitivity: 
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This is the power dissipated by the ergodic process into the measuring system, 
expressed in the frequency domain taking into account the system bandwidth. This 
definition is general in the sense that no assumption is done on the physical process 
making x fluctuate, and no assumption is done on the physical process linking the 
value of x to the dissipated power. Though it implies two important restraining points. 
First, the fluctuating process has to be ergodic. Second the measurement is done in a 
finite time and in a finite frequency band, therefore the system is a filter giving an 
estimation of the random process characteristics. This estimation procedure appears in 
the spectral density expression through the bandwidth variable (∆f). How can we 
interpret this NEP, in terms of measured signal and signal over noise characteristic of 
the system ? 
 

The measuring system acts as an operator transforming the input ergodic process 
x(t) to a new ergodic process y(t) at the system output. If the system is linear (obeying 
associative and distributive rules), then the operator is the convolution product of the 
input process with the system response h(t). The Fourier transform allow to write the 
operation in the frequency space as a simple product.  
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Consider the system acts as an ideal low-pass filter (most measuring systems are low 

pass filters), which transfer function )(
~

fh  can be expressed as a ideal rectangle 
function, and suppose the input signal is centered (null mean) and its spectral density 
can be considered as constant (white noise) in the frequency band of the filter, then: 
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So for a centered ergodic process with spectral density considered as frequency 
independent in the measuring system bandwidth ∆f=2fc, the NEP is the power 
dissipated into the system by unit bandwidth due to the process variance. 
Since the measure is done in a finite bandwidth and a finite time tm (rectangle function 
in the time domain) it gives only an estimation of the signal characteristics. To know 
how good is the estimation, it is necessary to calculate the variances of the measured 
characteristics. For instance the variances of the signal mean is: 
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As expected, the estimated means tends toward the real mean as tm increases. This is 
also true for the signal autocorrelation and autocovariance. Thus the precision on the 
measured power will increase as the square root of time. This characteristic shows the 
very interest of the NEP expressed in W/Hz1/2; it is an information about the system 
performances to measure a given process independently of the integration time. 

Generally the signal delivered by a receptor can be written as the sum of the useful 
signal and a background noise term xm(t)=xs(t)+xb(t). The noise is the fluctuations 
causing a difference between the estimators for the signal (measurements made over a 
finite time tm) and the true average values of the signal; it is given by the signal 
variance. The ratio signal to noise is an estimation of the relative differences between 
the estimator and the wanted quantity [Léna]. In the case of additive independent 
noise sources, the estimated signal to noise is: 
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where the overbar is used to mark the mean over the measurement time.  
Let suppose the background noise dominates the measurement, and is ergodic with a 
spectral density approximately constant in the frequency band ∆f and null elsewhere 
(either due to the noise structure itself or due to the limited detector bandwidth). In 
terms of dissipated power into the detector, a signal over noise ratio of 1 will lead to: 
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So the Noise Equivalent Power can be interpreted the input signal power that 
produces a signal-to-noise ratio of unity at the output of a given detector at a given 
data-signaling rate or modulation frequency, and effective noise bandwidth; it is the 
minimum detectable power per square root bandwidth. This “practical” definition is 
the one given in the introduction, and in the limit of the special conditions given 
above for the noise and the detector, it is indeed equivalent to the “statistical” 
definition using the monolateral spectral density. As it is shown in the next section, 
this is particularly true for background limited optical detectors.  

 
 

Calculating the photon noise NEP for background limited detectors. 
 
Let start this study from the basics of statistical physics which establish for a system 

of free particles in a thermostat (box fixing the mean energy of the particles) the 
probability that a state l is occupied [Diu]: 
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where E is the system energy, N the number of particles, µ the chemical potential, k 
the Boltzmann constant, and T the system temperature.    

Because they are bosons, an unlimited number of photons can occupy a cell l of the 

phase space. Noticing that ( ) n
n

n xxx −=− ∑
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0

, the partition function ζl of a state l 

can be written as a simple expression without the sum sign, and since the occupation 
probability Pl does not depend on the other states, the mean number of bosons in the 
state l (or mode occupancy number) can also be express as a simple expression called 
the Bose-Einstein statistics: 
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Using the same reasoning, one can deduce the expression of the variance of the 
number of photons: 
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Let consider a system with g cells of phase space and let’s call n the total number of 
photons. One has: 
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The term (g-1)/(g+1) take into account the fact that photons can “travel” from one cell 
to another [Kastler], when g is big enough this term can be neglected and the 
expression is identical to the one presented in the introduction, with poissonian 
component plus a photon bunching component.  
 

The problematic for a real detector receiving photons is to have a good estimation of 
the number of states (or cells of the phase space) available. The rigorous 
demonstration giving a correct and general expression of the number of available 
states would require a longer and more technical paper, so I choose to give a feeling 
of the estimation of this number thanks to the basics of electromagnetism and physical 
reasoning on the extremes asymptotical cases. The more general and correct 
formulation is based on the semiclassical HBT theory [Hanbury Brown and Twiss], 
and can be found in other papers [Lamarre]. 
Exactly like the demonstration of the Planck law of Black Body radiation [Diu], we 
start the reasoning from the Maxwell equations allowing to formulate the 

electromagnetic field as progressive waves into a closed box: ( )[ ]trKiE ω−∝ rrr
exp . 

The wave vector verifies cK ω=
r

and LnK ii π2= , where ω is the wave pulsation, 

c is the speed of light, L is the typical length of one of the box side, ni is a positive 
integer. The total number of modes K

r
 available between K and K+dK is the volume 

of the sphere skin with a thickness dK divided by the minimal size of one mode: 
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where V is the box volume and ν=ω/2π is the wave frequency. 
For a detector with a surface Ad receiving photons from a solid angle Ω, during a time 
tm, the box of available modes is the cylinder of surface Ad and height c·tm. Because 
the number of available directions for the vectors K

r
 is limited by the incoming solid 

angle, the volume of available modes between K and K+dK is not a sphere anymore 
but a cap. Thus the number of modes available is: 
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where λ=c/ν is the photons wavelength. Since 2/ ZAs≈Ω , where As is the surface of 

the source and Z is the distance between the source and the detector, one can define a 
quantity conserved all along the light path called the beam throughput 

2ZAAAU sd=Ω≡ (this is the variable U used in the introduction). The term λ2/AΩ 

can be interpreted as the spatial coherence factor of the beam, and the term 1/tmdν as 
the time coherence factor. From quantum mechanics principle, the minimum number 
of states available is an integer and can’t be less than one. This reasoning actually 
holds for each one of the coherence factors so that the minimum value for the number 
of modes available is g=1. One can feel that the minimum size for a photon state 
(phase cell) will be limited by the diffraction pattern on the detector plane. This result 
appears in the demonstration of the Zernicke-van Cittert theorem which can be stated 
as: if the linear size of a quasi-monochromatic radiation source and the distance 
between two points of its image on a screen are both small compared with the 
distance between source and screen, the modulus of the complex degree of coherence 
is equal to the modulus of the spatial Fourier transform of the source intensity, 
normalized by the total intensity of the source [Léna] [Born and Wolf]. One could 
reach the same results following Heisenberg’s uncertainty principle. These reasoning 
are also valid in the time domain for the time coherence factor [Mandel] [Kastler], but 
we will assume that we always verify tm⋅dν >1, which is the case for all instrument 
measuring higher frequencies than the mid range radio domain. Taking into account 
the degree of polarization (p=0 for an unpolarized ray, and p=1 for a ray polarized in 
one direction), the generalized expression of the number of modes available and the 
spatial coherence factor ∆s(ν) can be written as: 
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where Iν [W/(m2 sr Hz)] is the specific intensity of the light received on the 
infinitesimal surface element d2r of the image from the infinitesimal element d2ρ of 
the source, and Z is the distance between the source and the image. Checking that the 
asymptotical values of coherence factor are indeed the one we gave with the previous 
simple reasoning, is curiously easier for the case ∆s(ν)=1 than for ∆s(ν)=λ2/AΩ. 
Indeed, when the beam throughput is much smaller than the coherence throughput 

( )( )22 λρ <<∆∆ Zr , the cosine term tends toward 1 and therefore ∆s(ν)=1. In the 
case of a large uniform beam such that the specific intensity can be considered as 
constant, the mathematical trick to perform the integration consist of using the Fourier 
transform of the intensity to make the cosine term disappear and use the Parseval-

Plancherel theorem (if, [ ])()( xfFTF =ω , then ( )∫∫
+∞

∞−

+∞

∞−
= ωωπ dFdxxf
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to come back in the real space so that the numerator of ∆s(ν) is equal to 

( )22
0 νcZAAI ds . As can be seen the general formulation is not really practical, 

hopefully in the case the detector efficiency is uniform on its surface, the spatial 



coherence factor can be written in a more simple way allowing to calculate it in 
practice for any beam size: 
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where L is the Fourier transform of the source brightness (Bν( ρr )) at frequency ν. In 
the case of a punctual source viewed through a circular pupil, it will be Airy pattern. 
The value of the coherence factor depends only on the value of ( ) ( )cZrr ds νµ = , 

where rs and rd are the characteristic dimensions of the source and the detector. 
 

Now consider a source emitting a mean spectral power Pν. Since each photon caries 
and energy hν, the mean spectral power is related to the mean number of photons 
emitted by the source during a time tm by the simple expression me thndP ννν = . 

Consider that between the source and the detector output the signal is attenuated by a 
factor γ(ν), which can gather many different things that we will discuss latter 
(emissivity, efficiency, transmission, absortivity). If Qν is the spectral power 
dissipated into the detector then Qν=γ(ν)Pν. Let’s define nd as number of photons 
detected so that md thndQ ννν = . The fluctuations of the numbers of photons 

detected during the time tm is: 
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The trick that will allow to link together all the definitions and results shown in the 
introduction resides in the definition of the measuring system power response (or 
sensitivity). If one includes some attenuation factor γs into the power response of the 
detector, then the power response is the conversion factor between the number of 
photons before the objects responsible for the attenuation(s) and the power dissipated 
into the detector. So the general expression of the power response is: 
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=  

This possibility to include an attenuation factor into the detector power response will 
lead to two different interpretation of the definition of the NEP.  

• If the power response has no attenuation factor (or γs=1) then the NEP is the 
power dissipated by the noise source into the detector, that is to say the noise 
power at the output of the detector. As in Lamarre’s article I call this NEP the 
electrical NEP, it is general in the sense that it is generally used for other 
noise sources than incoming radiations; for example it is applied for the 
Johnson noise (or thermodynamic noise) created in a resistor or for any other 
electrical noise such as shot noise in a transistor, or phonon noise in devices 
sensitive to electron-phonon coupling, or many other noise processes.  

• If the power response includes an attenuation factor smaller than unity, then 
the NEP is the power at the input of the detector that would produce the same 
signal level as the noise source. This is equivalent to the first definition given 
in the introduction. I call it the optical NEP as a reminder of what seems to be 
its most common use (according to the ease one can find the Federal Standard 
1037C definition of NEP on the internet, and Lamarre uses also this term to 
distinguish the two meaning of the NEP). Though this definition does not 
specify what kind of power is at the detector input; it is actually not 



necessarily an optical power ! Moreover this definition does not specify what 
is considered as the input of the detector; as it will appear in the applications 
below it is sometime useful to include part of the detector’s environment after 
the input. It is important to stress that in these conditions the attenuation factor 
γs(ν) in the power response is not necessarily the same as the attenuation factor 
γb(ν) giving the relation between the number photons emitted by the noise 
source and the number actually detected. 

Using the last equation of the previous section, the general expression of the noise 
equivalent power due to the noise source on the detector will be: 
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Integrating in a band ∆ν of the frequency domain and considering that the system is a 
perfect integrator (rectangle function) with a bandwidth ∆f, and taking care of the 
polarisation, will give the most general expression for the photon NEP: 
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The minimum measurement time is usually chosen to satisfy the Shanon-Nyquist 
criteria so that all the information filtered by the detector is sampled. So if the system 
is a perfect integrator one has 1/tm=2∆f. If the system is not a perfect integrator, then 
one has to consider ∆f  as a the equivalent noise bandwidth (ENBW) which is defined 
as the bandwidth of an ideal low-pass filter which could pass the same power of white 
noise than a real filter [Gualtieri]. So calling fc the cutting frequency of a first order 
low pass filter, and τ=RC its time constant, the calculation gives (see [Leclercq]) 

)4/(12/ τπ ==∆ cff . 

 
Now let check that with the previous expression one can find the three formulations 

given in the introduction when using different assumptions about the various 
components of the equation. 
1) Suppose the measurement time satisfies the Shanon-Nyquist criteria (1/tm=2∆f), the 
system power response does not include any attenuation factor (γs=1), and the 
attenuation factor between incoming photons of the noise source and the detected 
photons is the quantum efficiency of the detector (γb=η). These conditions give: 

( ) ( )∫∫ ∆++= νηννην νν dPpdPhNEP s
222 )(12  

This is exactly the same formula than Lamarre’s NEPph; the (electrical) Noise 
Equivalent Power for detected photons. 
2) Suppose the measurement time satisfies the Shanon-Nyquist criteria (1/tm=2∆f), the 
system power response includes the quantum efficiency of the detector (γs=η), which 
is also the only attenuation factor applied to the noise source (γb=η), the number of 
modes is so high that the photon noise can be considered as purely poissonian 
(AΩ>>λ2 so that ∆s≈0), and the radiation is monochromatic (Pν(ν)=δ(ν)Pb). These 
conditions give: 

η
ν bPh

ffNEP ∆=∆ 22  

This is exactly the same formula than the expression of PS in Léna’s book; the 
(optical) Noise Equivalent Power of incident photons in a totally incoherent beam. 



3) Suppose the measurement time satisfies the Shanon-Nyquist criteria (1/tm=2∆f), the 
light has two polarization (not polarized p=0), the system power response includes the 
main beam efficiency (ηMB(ν) applied for punctual sources), the atmosphere 
transmission (ta(ν)=1-ε(ν)), and the optical efficiency (product of the optics 
transmission and the detector absorptivity α(ν)=to(ν)⋅a(ν)) so that its attenuation 
factor can be written γs=ηΜΒα(1-ε), the noise source is the atmosphere which is 
extended (not attenuated by the main beam efficiency) and its radiation is attenuated 
by the optical efficiency α(ν) so that γb=α, and finally the integration window of the 
wave frequencies ∆ν is small enough to consider optical efficiency and main beam 
efficiency as constant. These conditions give: 
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We want to explicit the spectral power using macroscopic measurable parameters. To 
do that we simply use the equation concept that allowed us to introduce the spectral 
power and we explicit the number of emitted photons a function of the atmosphere 
temperature thanks to the mode occupancy number (nl) calculated previously. Using 
ne=gnl would give the blackbody spectral density (for a rigorous demonstration using 
all the “ingredients” presented previously of the Planck law of the blackbody radiation 
see a statistical physics book [Diu]), but the atmosphere is not a perfect blackbody 
and the number is attenuated by the emissivity ε(ν) (see references dealing with 
radiation transfer for a generalization of thermal radiation to “greybody” and 
introduction to the concepts of opacity, emissivity and transmission [Leclercq] [Born 
and Wolf ?]) so that:  
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where the factor 2 comes from the two polarizations of light (p=0). Assuming the 
atmosphere thermal energy is much higher than the detected photons energy 
(kT>>hν), one can use the Rayleigh-Jean approximation for the mode occupancy 
number and deduce from the previous expression of the NEP a new expression: 
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This would be exactly the same formula as the one giving the Background Radiation 
Equivalent NEP in Benford’s article at the condition that detector is smaller than the 
Airy disk created by the diffraction through the telescope pupil, that is to say AΩ<λ2 
so that ∆s≈1. In his article, Benford uses the number of modes N instead of the inverse 
of the spatial coherence factor, and says N=AΩ/λ2 =1 at the diffraction limit. If the 
size of the detector is equal to the FWHM (full width half maximum) of the Airy disk, 
then one has indeed AΩ/λ2 =1, but as we saw previously, 1/∆s is actually 
underestimated, which could explain why he talks about excess noise afterward in his 
article. Benford call this NEP the Background Radiation Equivalent NEP to stress that 
it gives the incident power that a source outside the atmosphere should have to create 
a signal over noise of one when the noise is dominated by the atmosphere radiation. 
 



 
Conclusion about NEP. 

 
Most of the noises phenomenon occurring in devices are due to thermodynamic 

fluctuations of some quantities that are statistically described by the realizations of 
stationary and ergodic random processes with finite power. The mean square 
fluctuation, called variance, of a random process is at the origin of the noise signals in 
the devices. The square modulus of the ergodic process Fourier Transform is called 
the spectral density (or power spectral density, even though the word power refers to 
the square of the signal and not to the Watt unit !). The spectral density is shown to be 
the Fourrier Transform of the variance and describes fully the noise process, its unit is 
the square of the process unit per hertz. In quadratic detectors the signal measured is 
the square of the process amplitude (for example electromagnetic waves), or more 
specifically the energy or power of the process. The sensitivity or power response is 
the quantity giving the correspondence between the process unit and the power 
dissipated into (or detected by) the detector, its unit is the process unit per Watt. The 
noise Equivalent Power is equal to the square root of the spectral density divided by 
the power response of the device; it has the units of Watt per square root hertz. The 
concept of NEP is particularly useful for the characterization of quadratic detectors; it 
quantifies the noise level in the signal measured by the detector in terms of dissipated 
(detected) power or incident power. When the noise can be considered as white in the 
detector bandwidth, the NEP is independent of any time variable so that the noise 
power varies only as the square root of integration time. Some defines the NEP as the 
incident radiation power that would produce a signal over noise of unity. In that case 
the power response is corrected with the detector efficiency and the result is the 
correspondence between the process unit and the power incident to the detector, not 
the power dissipated into it. Because of this ambiguity about the power at the input or 
the output of the detector one can define several NEPs. From the various usages found 
in the literature one can establish four major definitions which are not equivalent but 
are linked to each other: 
The statistical NEP is the most general definition: square root of spectral density 
versus power response, giving the power dissipated into the detector due to the noise. 
The electrical NEP is the same as the statistical NEP but in the particular case that 
the ergodic process creating the noise is white in the system bandwidth. 
The optical NEP is the electrical NEP divided by detector quantum efficiency. It is 
the power at the entrance of the detector due to the noise source. 
The Background Radiation Equivalent NEP is a particular case of optical NEP for 
ground observatories where the atmosphere is the dominant noise source and is 
included into the detector definition so that the NEP is the power that a punctual 
source should have before the atmosphere to obtain a signal over noise of unity. 

 
 

Appendix: NEFD, NET and integration time. 
 
To know the performance of a detector to observe a given source the BRE NEP can 

be very interesting. But in astrophysics sources are rarely described in terms of power, 
which implies to know the detector throughput and is therefore not universal. The 
concept of flux (or flux density) is independent of any detector geometry so it is often 
used to describe a source. The flux is defined as the power per unit surface per signal 
frequency. The usual flux unit in radioastronomy is the Jansky: 1Jy=10-26W/m2/Hz. 



The Noise Equivalent Flux Density is defined as the level of flux density required to 
obtain a unity signal to noise ratio in one second of integration with the detector. The 
flux required is at the input of the detector, but again there are some ambiguities in 
this definition. Some do not include the atmosphere, some do. Some includes the 
observing mode, some don’t. To write a general expression for the NEFD derived 
from the NEP, let define two correction factors: οm the observing mode factor and γx 
the attenuation factor multiplied to γs in the NEP expression to specify the location 
where the equivalent flux is calculated. The general expression for the NEFD of a 
detector with a spectral width ∆ν << ν and a collecting surface Ad is then: 
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Where the notation NEP(γx) is used to indicate that in the NEP expression one has to 
use γxγs. If the NEP used is the optical NEP and γx=to the transmission of the optics 
bringing the signal to the detector, then the NEFD is the flux at the entrance of the 
optics that would create a unity signal to noise ratio at the detector output per second. 
Often in the literature people define the NEFD out of the atmosphere. If the sky is 
observed continuously, the observing mode would be οm=1. But in radioastronomy a 
very common observing mode, called ON-OFF, consist of subtracting the atmosphere 
power using the difference of too nearby fields. The noise of the two fields images 

will add quadratically, increasing the NEFD by a factor 2 . In addition, in the basic 
application of this mode only half of the time is spent on the source, and since the 
noise power increases as the square root of time, the NEFD will be increased by 

another 2  factor. To avoid several calculation steps, some authors include these 
correction factors in their calculation and give directly the NEFD for ON-OFF 
observations, hence in that case οm=2. 

In the radioastronomy community the unit of temperature (Kelvin) is sometimes 
even more used than the Jansky to characterize a source flux. The conversion is done 
with the Rayleigh-Jeans approximation of the Planck formula of the blackbody 
radiation (explained in the previous section). Naturally another concept is used to 
express the noise in terms of temperature; the Noise Equivalent Temperature. The 
NET is defined similarly to the NEP for systems measuring a property with 
temperature variations, like thermometers. Thus the NET definition uses the system 
thermal response [ ]Kunitxtrx /_  instead of the power response:  
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The calculation of the power emitted by a source at 1K Rayleigh-Jeans, gives the 
conversion factor to calculated a NET knowing a NEP: 
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Another information very often used in literature to characterize instruments is the 
integration time tσ necessary to detect a given source with a signal to noise ratio σ. 

Since noisePfNEP =∆  and ∆f=1/2tm, the integration time is calculated from the NEP, 

or NEFD or NET as: 
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To get rid of ½ factor in the time expressions, some include it in the Noise Equivalent 
parameters definitions, and indicate this choice using seconds in the parameters: 

[ ] [ ] [ ]sK
NET

TNEsJy
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The time dimension is sometimes used differently; the system performances are given 
as the detection limit giving signal to noise ratio σ after a given amount of time (for 
example the flux giving σ=3 after 2 hours). 
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