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Abstract.

The Noise Equivalent Power (NEP) is a concept oftsed to quantify the
sensitivity of a detector or the power generated kBpurce of noise on a detector. But
the literature offers different definitions andfdient ways to calculate it. | recall here
these definitions and the results of calculationsnfseveral authors, for the particular
case of photon noise from background source illatimg a detector. In the second
part of the document, starting from bases of matial description of random
processes, | show the link between the differeffiniiens of the NEP. In the third
part, starting from the fundamental properties a$dn | calculate the most general
expression for the photon NEP, allowing to link tlegious expressions found in the
literature, and understand the assumptions mackafdr case.

Introduction.

Definitions of NEP.

Contrary of what could be thought regarding theenite of the Noise Equivalent
Power in literature to characterize the measuresn@nits of detectors, it is not easy
to find a clear mathematical definition of the Ni&Rhe literature!

The first definition given here comes from the Ratl&Standard 1037C (telecom
glossary 2000) of the United State GovernmelaiSe-equivalent power (NEP) isthe
radiant power that produces a signal-to-noise ratio of unity at the output of a given
optical detector at a given data-signaling rate or modulation frequency, operating
wavelength, and effective noise bandwidth. Some manufacturers and authors define
NEP as the minimum detectable power per square root bandwidth [WHZY?].”
[http://Iwww.its.bldrdoc.gov/fs-1037/fs-1037c.htmJAlthough is widely used on
internet or articles with different phrasing ([Berd] [Léna] [Goodrich] [Atis]
[Anghel et al] [Das et al] [Besse] and others)s isurprisingly confusing by its lack of
mathematical precision and generality. Indeeds ihot clear whether it should be
expressed in W or W/HZ, it does not give the relation between each corapbof
the formula, and it is defined only for radiatioetectors (for instance NEP produced
by an electronic device can’t be defined that way).

There is another definition coming from the theofsignal and random processes,
which is much more general and mathematically pee¢hough rarely usedGiven a
property X which may fluctuate with a finite amplitude in a finite frequency band Af
and which correspond to a random ergodic process. Given a system able to measure
this property with a defined power conversion factor called sensitivity. The Noise
Equivalent Power of the system measuring the fluctuating property is the ratio of the
ergodic process monolateral spectral density over the sensitivity of the system, it is
expressed in units of WIHZY2." [Leclercq, mais viens d’une autre source & retesu
1. Although more rigorous than the previous adfon, this one is tougher and uses
terms that also need to be defined (spectral deresigodic process, sensitivity). For
that reason it is rarely used in the optical detetiterature (or it is used in a more
simple but less rigorous way [Dutoit] [Zweiacker]).



One can ask whether these two definitions are atgnt or at least compatible with
each other ? I'll show that the first definitionastually a direct consequence of the
second with some restrictions on the spectral tieabthe noise source process.

Some calculations of photon noise NEP.

There are several references in the literaturedivatformulas for the calculation of
NEP from photon noise on detectors. | give heregheferences that are particularly
interesting because they give different formulatiothus representative of the wide
variety of formulations that can be found in therature, and in addition they present
a special interest for the specification of backgb limited bolometers for the IRAM
30m telescope.

1) In the book “Observational Astrophysics” [Léntje author introduces the NEP
in the chapter dealing with the conversion fphotons into electrons in a
photoelectric detector. He define first the deteet® a filter with a given quantum
efficiency n and an idealized transfer function being a redtafignctionl1; cutting
off at a given frequendy. Then he calculates the variance of the photontirre
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where the bar above a letter is a mean vaktgis the Dirac function, and the term in

the integral is the filter spectral density for aigsonian stochastic process. The
signal-to-noise ratio for an incident radiation @nv(v) = Ahv is:
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Then he applies this calculation to the situatidmere the detector simultaneously
receives photons from a faint source and from a idatmg background. The
minimum detectable signaf\=1) is then limited by the background fluctuations so

thatis= g, which is an incident power at the detector:
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This power, referred to a unit band-pdsslHz is measured iWHZY ; it is the
Noise Equivalent Power from the background on the detector.

2) In the article “Noise Equivalent Power of backgrd limited thermal detectors at
submillimeter wavelengths” [Benford et al], the lauts start from the mean square
fluctuation in the number of photons detected pedenfor a telescope of main beam
efficiency nvs(V), a blackbody emissivitg(V), and an optical efficiency (product of
optics transmission and detector absorptivitgy) [Fellgett et al]:

o? =n(l+en,,an)
Using the Bose-Einstein statistical expression tlee number of photons, and
multiplying the above expression by the energy pieoton hv and the number of
modesN, then vyields the spectral density of the mean mjdlactuations in the
radiation power detected:
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where the factor of 2 derives from the fact thah@rmal detector is a square law
detector and consequently doubles the mean sduatedtions [Robinson].
To calculate the total power mean square variatitres authors integrate the
expression over the frequency band of detectiom, ase three assumptions to
simplify the expression: (1) the detector perforoems limited by the atmosphere
which temperature is high enough so that the Rglyi@eans approximatiom (=
kT/hv) can be use in the photons frequency band of eétectbr; (2) the detector is in
the diffraction limited case so that the numbemmuddes is 2 when including both
polarization of light ; (3) the bandwidth of thestrument is narrow and the observed
sources are smaller than the beam size so thatthéer of modes is independent of
frequency. Using the first definition for the NER@n in the introduction, assuming
that the observed source is a perfect blackbody taedatmospheric background
contribute in both the main beam and error bearm, atithors establish the NEP
expression in the following manner:

NEP [ Noise/ Sgnal

Signal 077, (v) a(v) (L-£v))
Noise 1/ &(V)a(v)
4¢(v)
/7an a(l_ E(V))
The authors call this last expression Berkground Radiation Equivalent Noise

Equivalent Power, hence defined as the source noise power yiellisignal to noise
of 1 when observing a source through the atmosphere

NEP? = [ KT hv[1+ £(V)aE—T}dv
vV
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3) In the article “Photon noise in photometric mstent at far-infrared and
submillimeter wavelengths” [Lamarre] the authorrtstaalso from the mean square
fluctuations of the number of photons, but for there general case of cells (or
modes or states) of the phase spgeel):

g

For an incident radiation characterized by a mgsita spectral powd?, measured
by a detector with a quantum efficiengyn the frequency banflv during the time,
the mean number of photons detected is:
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where Q=nF, is the mean optical spectral power of the effetyivdetected
radiation. The number of modes can be written agtioduct of the inverse of space
coherencels by the inverse of time coherende/A/ [Kastler ?][Mandel ?]. The
fluctuations of the absorbed energy are then:
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where the ternrm has been introduced to take into account the igakson of light in
the number of cells available in the phase spabesd& photons fluctuations induce

fluctuations on the detector signal expressedrmgeof electrical NEP as:
2
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whereB is the equivalent bandwidth of a perfect integratdh an integration time
and is equal to 1/¢2[Bracewell]. As in Benford et al, the NEP hasems. The first

one is purely poissonian (signal growsrasand noise as/ﬁ) and can be interpreted
as a quantum noise also called shot noise whettiirs in devices. The second term
is the boson factor of the radiation and can berjmeted as a phenomenon of photon
bunching or interferences of waves at the origirthaf diffraction phenomena. The
rest of the article is dedicated to a discussiopugithe space coherent factor. After
giving the explicit caseA=c*(1/”U) valid only when the incident radiation is
produced by an incoherent source and is uniforndiriduted over a detector which
beam throughputU) is large with respect to the etendue of coherdméé€?), the
author presents the semi classical theory of HanlBrown and Twiss (HBT)
describing intensity interferometry in visible ligfHanbury Brown and Twiss] and
derives a general expression V), called the partial coherence factor by HBT.
Considering the dependencies/@fover the system dimensions and considering the
effect of state polarizatiomthe author gives the general expression of the:NEP

NEPZ =2[ hvQ, dv + {1+ p?)[ A,()QZ dv
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This is the general expression of tdectric Noise Equivalent Power created by
incident radiations on a detector. In this exp@sBiis the degree of polarization and
the partial coherence factor depends on the sodmeensionrs, the detector
dimensionrg, the distance between the source and the detéctand the radiation
wavelengthi=c/.

One can ask whether these three different resoitghe photon NEP created on a

detector are compatible with each other or not ? tbey describe the same
characteristics or is there at least some linke/éend them ?
In the following part | will focus on the definitioof the Noise Equivalent Power,
then based on this definition | will show the linketween the different NEP
calculations and establish the expression(s) $& trom now for the specifications of
bolometric detectors.

Defining NEP using random process formalism.

The phenomenon afoise forms the limit to the measure of everything inune.
Such a central problem of science has obviousiyn beteidied and formalized
mathematically. Many books and papers deal withthleery of random process, so |
recall here only the basics definitions that wilba to study the specific case of the
NEP notion. These definitions are mostly from [égct]], based on the lectures from
[Diu][Pouvil][Puech][Borg], and [Léna].

Let’'s call x a random (or stochastic) variable which can tdiee \aluesx, or X,
depending on they are discreet or continue, withribrmalized probabilitieB,, or
density of probabilitiep(x). The mathematical expectancy of any functioof the
random variable is:
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where P, =1 and J'j: p(x)dx =1

The mean and the variancexoare defined as:
m= E{x}

o7 = f(x- E{q)*} =} - {4
where the last equality is obtain thanks to théribistive property of the integration
and the normalization of the probabilities giviega E{b} + ¢} = E{a} E{b} + E{c}.

Now let's defined an experiment which possible ltss( have probabilities?(()
and are assigned with a function of tixg,(). The family of functions created are
called stochastic process, and the notatihis used to represent this process. The
mean, autocorrelation and autocovariance are régelyadefined as:

m, (t) = E{x(t)}

Re(t, 1) = Efx(t,) X (t,)}

Cotyty) = Efx(t) -me)] [x(t,) - m(t,)] |

= g2 (t) =C(t,t) = R(t,t) —m?(t)
where the asterisk denotes the complex conjugate.
The process is stationary in the simple casedbmserved in time in the probabilistic
point of view. In other word a translation in tirdeesn’t change its statistics (mean,
variance an so on). Redefining the time variabke$ =, t,=t+ r allow to write the
autocorrelation and the autocovariance as deperating unique time variable (e.i.
R(7) andC(1)).

A stochastic process is ergodic when the tempoedn®s are asymptotically equal

to the means on all possible realizations of thecess, that is to say equal to the
mathematical expectancies:

lim x. = lim = [ x(t)dt =
TITo Xr _Tlmo?jo X(t)dt = m,

li[]l R (1) = l'[‘[l%ﬂ X(t)x(t +7)dt = R (1)

The ergodicity, which implies stationarity, is obusly linked to the question of
knowing whether the measure during a finite time afrandom process is
representative of its real physical properties.o&ggted to the problem of measuring
is the inevitable process of filtering the signgiltering can be described in the
frequency domain and in the time domain, and theriEp Transform is the useful
tool linking the two domains.

The spectral density of a signal is the squarehefrhagnitude of the continuous
Fourier transform of the signal, for an ergodicqass one has:

sxx(f)sm%i(f)i*(f) [x_unit? / HZ]

Su(f) =FT[R(7)] R, (0) =[S, (f) f

The equality with the Fourier transform of the aatwelation constitutes the Weiner-
Khintchin theorem. The restriction of the spectiahsity to the positive frequency
domain is called monolateral spectral densgff|) = 2S«(f).



Let consider a system measuring a propertikely to fluctuate with a finite
amplitude as an ergodic process in a finite frequdyand. The function linking the
value ofx to the real power dissipated into the system és dénsitivity (or power
response) of the system to the measured propesty[x_unit/W]. The Noise

Equivalent Power of the process measured in the detection systetefised as the
ratio of the square root of the monolateral spédeasity in the finite frequency band
over the system sensitivity:

NEP E—VSXS’N) iz

This is the power dissipated by the ergodic prodess the measuring system,
expressed in the frequency domain taking into actcthue system bandwidth. This
definition is general in the sense that no asswonps8 done on the physical process
making x fluctuate, and no assumption is done on the phlgitocess linking the
value ofx to the dissipated power. Though it implies two artpnt restraining points.
First, the fluctuating process has to be ergodéco8d the measurement is done in a
finite time and in a finite frequency band, therefdthe system is a filter giving an
estimation of the random process characteristios d@stimation procedure appears in
the spectral density expression through the bartiwidriable Af). How can we
interpret this NEP, in terms of measured signal sigdal over noise characteristic of
the system ?

The measuring system acts as an operator transfgrthe input ergodic process
X(t) to a new ergodic proceg§t) at the system output. If the system is lineaeatg
associative and distributive rules), then the dpera the convolution product of the
input process with the system respoh@g The Fourier transform allow to write the
operation in the frequency space as a simple ptoduc

y(t) = x(t) Oh(t) = f:x(t -7) h(r) dr

y(f)=X(f) h(f)
Consider the system acts as an ideal low-pass (ittest measuring systems are low
pass filters), which transfer functioﬁ(f gan be expressed as a ideal rectangle
function, and suppose the input signal is centénedd mean) and its spectral density
can be considered as constant (white noise) ifrélg@ency band of the filter, then:

ﬁ( f)= I‘I(%} wheref_ is thefilter cutoff frequency

Jj =R, (0) :Ij:Sxx(f) h(f) df =S, 2f =S, f, = pr, NEP? Af
So for a centered ergodic process with spectrakitiertonsidered as frequency
independent in the measuring system bandwifith2f,, the NEP is the power
dissipated into the system by unit bandwidth duthéoprocess variance.
Since the measure is done in a finite bandwidthaafidite timet,, (rectangle function
in the time domain) it gives only an estimationtloé signal characteristics. To know
how good is the estimation, it is necessary toutate the variances of the measured
characteristics. For instance the variances o$igpeal mean is:

o5, =2 [T o= nf L Jen L= 2
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As expected, the estimated means tends towarcetthenean as, increases. This is
also true for the signal autocorrelation and autagance. Thus the precision on the
measured power will increase as the square rottnef This characteristic shows the
very interest of the NEP expressed in W/t is an information about the system
performances to measure a given process indepéyndétite integration time.

Generally the signal delivered by a receptor cawbten as the sum of the useful
signal and a background noise texrg{t)=xs(t)+xp(t). The noise is the fluctuations
causing a difference between the estimators fositeal (measurements made over a
finite time t;) and the true average values of the signal; given by the signal
variance. The ratio signal to noise is an estinmatibthe relative differences between
the estimator and the wanted quantity [Léna]. le tase of additive independent
noise sources, the estimated signal to noise is:

S X, X%

N Joi+o;

where the overbar is used to mark the mean ovan#asurement time.

Let suppose the background noise dominates theumegasnt, and is ergodic with a
spectral density approximately constant in theuesgty band\f and null elsewhere
(either due to the noise structure itself or du¢hi limited detector bandwidth). In
terms of dissipated power into the detector, aadigier noise ratio of 1 will lead to:

g-

P == =—b = NEP./Af
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So theNoise Equivalent Power can be interpretedhe input signal power that
produces a signal-to-noise ratio of unity at the output of a given detector at a given
data-signaling rate or modulation frequency, and effective noise bandwidth; it is the
minimum detectable power per square root bandwidth. This “practical” definition is
the one given in the introduction, and in the limftthe special conditions given
above for the noise and the detector, it is indegdivalent to the “statistical”
definition using the monolateral spectral density.it is shown in the next section,
this is particularly true for background limitedtmal detectors.

Calculating the photon noise NEP for backgroundtéchdetectors.

Let start this study from the basics of statistigaysics which establish for a system
of free particles in a thermostat (box fixing thean energy of the particles) the
probability that a statkis occupied [Diu]:

e_ﬁ(E| -4y ) ) o ] _ _ 1

P == with thepartitionfunction Z =>"e AE-mM) andg =T
|

whereE is the system energi¥ the number of particleg/ the chemical potentiak
the Boltzmann constant, aiddhe system temperature.

Because they are bosons, an unlimited number dbphaan occupy a cdllof the
n-1
phase space. Noticing th{t—x)> x" =1-x", the partition functiory] of a state

0
can be written as a simple expression without the sign, and since the occupation
probability P, does not depend on the other states, the meananwhbosons in the
statel (or mode occupancy number) can also be expreasisple expression called
the Bose-Einstein statistics:
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Using the same reasoning, one can deduce the ekpresf the variance of the
number of photons:

— d N 1 2X o
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Let consider a system withhcells of phase space and let's cathe total number of
photons. One has:

_ =2 _
R
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The term ¢-1)/(g+1) take into account the fact that photons caawv&l’” from one cell

to another [Kastler], whemy is big enough this term can be neglected and the
expression is identical to the one presented in itii@duction, with poissonian
component plus a photon bunching component.

The problematic for a real detector receiving phetis to have a good estimation of
the number of states (or cells of the phase spasajlable. The rigorous
demonstration giving a correct and general expoessi the number of available
states would require a longer and more technicaépao | choose to give a feeling
of the estimation of this number thanks to the dssef electromagnetism and physical
reasoning on the extremes asymptotical cases. Tbee rgeneral and correct
formulation is based on the semiclassical HBT thdblanbury Brown and Twiss],
and can be found in other papers [Lamarre].

Exactly like the demonstration of the Planck lawBbfick Body radiation [Diu], we
start the reasoning from the Maxwell equations valg to formulate the

electromagnetic field as progressive waves intdoaed box: E O exdi (KF —wt)] .
The wave vector verifie)sﬁ‘ =w/cand K, =n 277/L, wherewis the wave pulsation,

c is the speed of light, is the typical length of one of the box sidejs a positive
integer. The total number of mod&s available betweeK andK+dK is the volume
of the sphere skin with a thicknedis divided by the minimal size of one mode:
2 2
ST EYPYLENY
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whereV is the box volume and= w/277is the wave frequency.

For a detector with a surfaég receiving photons from a solid anglke during a time
tm, the box of available modes is the cylinder offatg Ay and heighttt,. Because
the number of available directions for the vecttrss limited by the incoming solid
angle, the volume of available modes betwkeandK+dK is not a sphere anymore
but a cap. Thus the number of modes available is:

9= g(zzl;)z% ( 5= j tnev)




whereA=c/v is the photons wavelength. Sinfe= A /Z?, whereA is the surface of

the source and is the distance between the source and the detect® can define a
guantity conserved all along the light path callede beam throughput

U = AQ = A A /Z2 (this is the variabl®&) used in the introduction). The tetAdAQ

can be interpreted as the spatial coherence fattine beam, and the termtdv as
the time coherence factor. From quantum mechamiosiple, the minimum number
of states available is an integer and can’t be fleas one. This reasoning actually
holds for each one of the coherence factors salteaninimum value for the number
of modes available ig=1. One can feel that the minimum size for a phattate
(phase cell) will be limited by the diffraction patn on the detector plane. This result
appears in the demonstration of the Zernicke-vate€itheorem which can be stated
as: if the linear size of a quasi-monochromatic radiation source and the distance
between two points of its image on a screen are both small compared with the
distance between source and screen, the modulus of the complex degree of coherence
is equal to the modulus of the spatial Fourier transform of the source intensity,
normalized by the total intensity of the source [Léna] [Born and Wolf]. One could
reach the same results following Heisenberg’'s uac#y principle. These reasoning
are also valid in the time domain for the time aehee factor [Mandel] [Kastler], but
we will assume that we always verifydv >1, which is the case for all instrument
measuring higher frequencies than the mid rang® @aimain. Taking into account
the degree of polarizatiop£0 for an unpolarized ray, aml for a ray polarized in
one direction), the generalized expression of tin@bler of modes available and the
spatial coherence factdg(v) can be written as:
2
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where I, [W/(m? sr Hz)] is the specific intensity of the light edeed on the
infinitesimal surface elemenfr of the image from the infinitesimal elemadfjp of
the source, and is the distance between the source and the in@wgrking that the
asymptotical values of coherence factor are indieedne we gave with the previous
simple reasoning, is curiously easier for the cAge)=1 than for A{1)=A/AQ.
Indeed, when the beam throughput is much smallen the coherence throughput
((A,oAr/Z)2 << /12), the cosine term tends toward 1 and thereff®)=1. In the
case of a large uniform beam such that the speicifensity can be considered as

constant, the mathematical trick to perform thegnation consist of using the Fourier
transform of the intensity to make the cosine telisappear and use the Parseval-
Plancherel theorem (iff (w) = FT[f(x)], then J'j:|f(x)|2dx:(]/277)[:|F(a))|2dw)

to come back in the real space so that the numemitoAy(V) is equal to
12 A A, (cZ/v)’. As can be seen the general formulation is nollyrgmactical,
hopefully in the case the detector efficiency isfairm on its surface, the spatial




coherence factor can be written in a more simplg alfowing to calculate it in
practice for any beam size:

A (v):i”' J-J. |L((x—x')|//cZ,(y—y')v/cZ)|2dxdy dx' dy’

AR IL(00)’

wherelL is the Fourier transform of the source brightn@$,0)) at frequency. In
the case of a punctual source viewed through alairgupil, it will be Airy pattern.
The value of the coherence factor depends only envitiue of = (r.r,v)/(cZ),
wherers andrq are the characteristic dimensions of the sourdetfaa detector.

Now consider a source emitting a mean spectral p&weSince each photon caries
and energyhv, the mean spectral power is related to the meanbaumf photons
emitted by the source during a timg by the simple expressioR,dv =n, hv/t, .
Consider that between the source and the deteatputothe signal is attenuated by a
factor V), which can gather many different things that wél wiscuss latter
(emissivity, efficiency, transmission, absortivity)f Q, is the spectral power
dissipated into the detector th€h=KV)P,. Let's defineny as number of photons
detected so thaQQ,dv =n;hv/t_. The fluctuations of the numbers of photons

detected during the tintg is:

-
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The trick that will allow to link together all theefinitions and results shown in the
introduction resides in the definition of the measy system power response (or
sensitivity). If one includes some attenuation dagt into the power response of the
detector, then the power response is the convefsictor between the number of
photons before the objects responsible for thenaétiion(s) and the power dissipated
into the detector. So the general expression optiveer response is:

_ v

hv/t,,

This possibility to include an attenuation factawithe detector power response will
lead to two different interpretation of the defioit of the NEP.

» If the power response has no attenuation factonfdr) then the NEP is the
power dissipated by the noise source into the tatethat is to say the noise
power at the output of the detector. As in Lamarre’s article | call this NEP the
electrical NEP, it is general in the sense that it is generafigdufor other
noise sources than incoming radiations; for examples applied for the
Johnson noise (or thermodynamic noise) createdresiator or for any other
electrical noise such as shot noise in a transistophonon noise in devices
sensitive to electron-phonon coupling, or many otitese processes.

» If the power response includes an attenuation fagtwaller than unity, then
the NEP is thgower at the input of the detector that would produce the same
signal level as the noise source. This is equivalethe first definition given
in the introduction. I call it theptical NEP as a reminder of what seems to be
its most common use (according to the ease onéirwhthe Federal Standard
1037C definition of NEP on the internet, and Lamarses also this term to
distinguish the two meaning of the NEP). Though thedinition does not
specify what kind of power is at the detector inpiitis actually not
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necessarily an optical power ! Moreover this déifom does not specify what
is considered as the input of the detector; agdlitappear in the applications
below it is sometime useful to include part of tegector’'s environment after
the input. It is important to stress that in thesaditions the attenuation factor
(V) in the power response is not necessarily the sentlee attenuation factor
(V) giving the relation between the number photonsttedch by the noise
source and the number actually detected.

Using the last equation of the previous sectior, deneral expression of the noise

equivalent power due to the noise source on thectatwill be:

O; hV\/d"bz VHhV)
NEP,df =— = O
pro yWt, W)
Integrating in a bandv of the frequency domain and considering that yistesn is a

perfect integrator (rectangle function) with a bardth Af, and taking care of the
polarisation, will give the most general expressmmthephoton NEP:

NEP? =+ LvthPv(v)dwj (1+ pZ)AS(V)(Vb(V) PV(V)J dVJ

tOf (v.))? Vo2 ys()

The minimum measurement time is usually chosenatisfg the Shanon-Nyquist
criteria so that all the information filtered byetdetector is sampled. So if the system
is a perfect integrator one hasER2Af. If the system is not a perfect integrator, then
one has to consid&f as a the equivalent noise bandwidth (ENBW) wisctiefined
as the bandwidth of an ideal low-pass filter whedild pass the same power of white
noise than a real filter [Gualtieri]. So callifigthe cutting frequency of a first order
low pass filter, andr=RC its time constant, the calculation gives (see lgmeq])

Af = f r/2=1/(4r).

Now let check that with the previous expression ca find the three formulations
given in the introduction when using different asptions about the various
components of the equation.

1) Suppose the measurement time satisfies the 8kdyquist criteria (ith=2Af), the
system power response does not include any atienuédctor (&=1), and the
attenuation factor between incoming photons of ibé&se source and the detected
photons is the quantum efficiency of the detecggr ). These conditions give:

NEP2 = 2[ hvP, dv + {1+ p?)[ A,0) (7P, ) dv

This is exactly the same formula than LamarrBBPy,; the (electrical) Noise
Equivalent Power fodetected photons.

2) Suppose the measurement time satisfies the 8Hdymuist criteria (1}=2Af), the
system power response includes the quantum eféigiehthe detector)é=7), which

is also the only attenuation factor applied to tiogsse source f=r7), the number of
modes is so high that the photon noise can be deresi as purely poissonian
(AQ>>A? so thatAs0), and the radiation is monochromatR,(()=AV)Py). These
conditions give:

hv P,

n
This is exactly the same formula than the expressibPs in Léna’s book; the
(optical) Noise Equivalent Power ofcident photons in a totally incoherent beam.

NEP?Af = 2Af




3) Suppose the measurement time satisfies the 8Hdymuist criteria (1=2Af), the
light has two polarization (not polarizee0), the system power response includes the
main beam efficiency rfus(V) applied for punctual sources), the atmosphere
transmission t{(v)=1-4v)), and the optical efficiency (product of the apti
transmission and the detector absorptivty)=t,(V)@a(V)) so that its attenuation
factor can be writteng nysa(1-¢), the noise source is the atmosphere which is
extended (not attenuated by the main beam effigleaed its radiation is attenuated
by the optical efficiencyx(V) so thaty=a, and finally the integration window of the
wave frequenciedv is small enough to consider optical efficiency andin beam
efficiency as constant. These conditions give:

a R{hv+AV@00fl}dv
)a) 2

NEP? = |
B (’7MB (1_ &)
We want to explicit the spectral power using macopsc measurable parameters. To
do that we simply use the equation concept thatvaitl us to introduce the spectral
power and we explicit the number of emitted photarfsinction of the atmosphere
temperature thanks to the mode occupancy nunmpecdlculated previously. Using
ne=gn, would give the blackbody spectral density (foligrous demonstration using
all the “ingredients” presented previously of tHarfek law of the blackbody radiation
see a statistical physics book [Diu]), but the atpieere is not a perfect blackbody
and the number is attenuated by the emissigt) (see references dealing with
radiation transfer for a generalization of thernrabiation to “greybody” and
introduction to the concepts of opacity, emissiatyd transmission [Leclercq] [Born
and Wolf ?]) so that:
Pdv=nhv/t, =&V)gn hv/t,

2hy

A (v)
where the factor 2 comes from the two polarizatiohdight (p=0). Assuming the
atmosphere thermal energy is much higher than thected photons energy
(kT>>hv), one can use the Rayleigh-Jean approximationtfermode occupancy
number and deduce from the previous expressiomeoNEP a new expression:

= P, =&(v) n,

_ 1 KT 26(V)
n = [l -— P (KT >>hv)= KT
e —
NEP? :J' L . 4e(v) ~KT hv[1+£(v)ak—T}dv
A (V) 2, a(l-£(v)) hy

This would be exactly the same formula as the aviegthe Background Radiation
Equivalent NEP in Benford’s article at the condition that deteawsmaller than the
Airy disk created by the diffraction through théeszope pupil, that is to s#Q<A?

so thatAg=1. In his article, Benford uses the number of mdd@sstead of the inverse
of the spatial coherence factor, and shiyAQ/A% =1 at the diffraction limit. If the
size of the detector is equal to the FWHM (full thidhalf maximum) of the Airy disk,
then one has indeedQ/A*=1, but as we saw previously, AL/ is actually
underestimated, which could explain why he talksualexcess noise afterward in his
article. Benford call this NEP the Background RadraEquivalent NEP to stress that
it gives the incident power that a source outsigeatmosphere should have to create
a signal over noise of one when the noise is domthby the atmosphere radiation.



Conclusion about NEP.

Most of the noises phenomenon occurring in deveresdue to thermodynamic
fluctuations of some quantities that are statifiticdescribed by the realizations of
stationary and ergodic random processes with fiptaver. The mean square
fluctuation, called variance, of a random procesatithe origin of the noise signals in
the devices. The square modulus of the ergodicegss€&ourier Transform is called
the spectral density (or power spectral densitgnetough the word power refers to
the square of the signal and not to the Watt ynifhe spectral density is shown to be
the Fourrier Transform of the variance and dessrfo#ly the noise process, its unit is
the square of the process unit per hertz. In quiadilatectors the signal measured is
the square of the process amplitude (for exammet@imagnetic waves), or more
specifically the energy or power of the processe $hnsitivity or power response is
the quantity giving the correspondence between ptozess unit and the power
dissipated into (or detected by) the detectoruii is the process unit per Watt. The
noise Equivalent Power is equal to the square abthe spectral density divided by
the power response of the device; it has the whit&/att per square root hertz. The
concept of NEP is particularly useful for the cludeaization of quadratic detectors; it
guantifies the noise level in the signal measunrethb detector in terms of dissipated
(detected) power or incident power. When the no@ebe considered as white in the
detector bandwidth, the NEP is independent of amg tvariable so that the noise
power varies only as the square root of integraiioie. Some defines the NEP as the
incident radiation power that would produce a signeer noise of unity. In that case
the power response is corrected with the detedfariemcy and the result is the
correspondence between the process unit and therpowdent to the detector, not
the power dissipated into it. Because of this ambjgabout the power at the input or
the output of the detector one can define seveEtdN From the various usages found
in the literature one can establish four majorrdaéins which are not equivalent but
are linked to each other:

The statistical NEP is the most general definition: square root ofctqaé density
Versus power response, giving the power dissipated¢he detector due to the noise.
The electrical NEP is the same as the statistical NEP but in thequéar case that
the ergodic process creating the noise is whitbersystem bandwidth.

The optical NEP is the electrical NEP divided by detector quantfificiency. It is
the power at the entrance of the detector duegtmdinise source.

The Background Radiation Equivalent NEP is a particular case of optical NEP for
ground observatories where the atmosphere is timeindmt noise source and is
included into the detector definition so that thEMNis the power that a punctual
source should haveefore the atmosphere to obtain a signal over noise of unity.

Appendix: NEFD, NET and integration time.

To know the performance of a detector to obsergwen source the BRE NEP can
be very interesting. But in astrophysics sourcesrarely described in terms of power,
which implies to know the detector throughput asdherefore not universal. The
concept offlux (or flux density) is independent of any detecteometry so it is often
used to describe a source. The flux is definedh@gpbwer per unit surface per signal
frequency. The usual flux unit in radioastronomyttie Jansky: 1Jy=18W/m?/Hz.



The Noise Equivalent Flux Density is defined as the level of flux density required t
obtain a unity signal to noise ratio in one secohthtegration with the detector. The
flux required is at the input of the detector, lhghain there are some ambiguities in
this definition. Some do not include the atmosphemme do. Some includes the
observing mode, some don’t. To write a general esgion for the NEFD derived
from the NEP, let define two correction factogs; the observing mode factor apgd
the attenuation factor multiplied tg in the NEP expression to specify the location
where the equivalent flux is calculated. The genexpression for the NEFD of a
detector with a spectral width << v and a collecting surfadk; is then:

NEP(y,) ., _ NEP {i}
AbY A pdy VHz

Where the notatioDNNEP()«) is used to indicate that in the NEP expressios loas to
use Kk If the NEP used is the optical NEP agdt, the transmission of the optics
bringing the signal to the detector, then the NEEEhe flux at the entrance of the
optics that would create a unity signal to noiderat the detector output per second.
Often in the literature people define the NEFD ofithe atmosphere. If the sky is
observed continuously, the observing mode wouladdgel. But in radioastronomy a
very common observing mode, called ON-OFF, comdisubtracting the atmosphere
power using the difference of too nearby fieldse Tioise of the two fields images

will add quadratically, increasing the NEFD by atéa V2. In addition, in the basic
application of this mode only half of the time jgest on the source, and since the
noise power increases as the square root of tiee NEFD will be increased by

another+/2 factor. To avoid several calculation steps, somtha@s include these
correction factors in their calculation and giveredily the NEFD for ON-OFF
observations, hence in that cage2.

In the radioastronomy community the unit of tempa® (Kelvin) is sometimes
even more used than the Jansky to characterizaraestiux. The conversion is done
with the Rayleigh-Jeans approximation of the Plafakmula of the blackbody
radiation (explained in the previous section). Malty another concept is used to
express the noise in terms of temperature;Nbise Equivalent Temperature. The
NET is defined similarly to the NEP for systems meaing a property with
temperature variations, like thermometers. ThusNEE definition uses the system
thermal responst, [x_unit/ K] instead of the power response:

NET z—“sxif’m) [k /Fz

X

NEFD =o_

The calculation of the power emitted by a sourcdl&atRayleigh-Jeans, gives the
conversion factor to calculated a NET knowing a NEP

NET = NEPL
Pey IK)W]
Another information very often used in literatuceaharacterize instruments is the
integration timet, necessary to detect a given source with a signabtse ratioo.
Since NEP,/Af =P . andAf=1/2, the integration time is calculated from the NEP,

noise

or NEFD or NET as:

2 2 2
tg(PS) = l JE tg(Fs) :E o NEFD tg(Ts) :E JE
AN AN 27T

S S




To get rid of %2 factor in the time expressions, santlude it in the Noise Equivalent
parameters definitions, and indicate this choidegiseconds in the parameters:

NEP_EME{/_] NEFD_@[J /3] NET—E[KE{/_]

The time dlmenS|on is sometimes used dlfferenhgz, dystem performances are given
as the detection limit giving signal to noise rati@fter a given amount of time (for
example the flux givingr=3 after 2 hours).
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