
1105

673
1.64=

Remark: MAMBO pixels sample full beams 
(not Nyquist !), so 1.2x bigger than HPBW: kg Teh( ) 1.22

1.03
⋅

λM

D
⋅ 11 as= (taper: Teh=10dB )

Ωex
0

Ωx

ΩIn
⌠

⌡

d:=

Ωx
r=θ*πD/2λ

Effective solid angle:

σg eT( )
kg eT( ) π⋅

2 2 ln 2( )
:= Gg r eT,( ) exp

r
2−

2 σg eT( )
2

⋅











:=Gaussian beam approximation:

from σ, θeff = θfwhm/(ln(2))1/2 => Ωe = (π/4)*θeff
2 π

4 ln 2( )⋅
1.13309=

Total receiver source angle (ΩΩΩΩN=N*ΩΩΩΩpix): Verification:

ΩNb0 j,

π
4

fr fov
0 j,⋅( )2⋅:= ΩNb 3.1 5.9 14.0 25.5( ) 10

4
as

2⋅=
Nb0 j,

Θb λ0( )( )2
⋅

3.1

5.9

14.0

25.5













10
4

as
2⋅=

ΩNh0 j,

π

2 3⋅

π
4 ln 2( )⋅

⋅ fov
0 j,

kg Teh( )
uh

⋅








2

⋅:=

III.8) Pixel architecture comparison in terms of maps sizes.

Both chapters III.6. and III.7 showed that the number of pixels and filling factors are important 
criterias of the instrument performances. One can define various parameters to include them 
into one calculation. Below are two possible choices offering the advantage to be very eloquent 
in terms of practical instrument performance. Both use solid angles.

Introduction
Reminder: wavelength (λ), projection in the sky of the pixels physical size 
(Θ=u*λ/D), and angular sizes of the FWHM beams (θ=kg*λ/D) they intercept:

λ

3.20

2.05

1.25

0.87













mm= Θb λ( )

10

7

4

3













as= Θh λ( )

44

28

17

12













as= θb λ( )

23

15

9

6













as= θh λ( )

26

16

10

7













as=

FOV stutied and number of pixels in compact arrays, using a square paving for bare pixels 

(Nb=(π/4)*(fov/Θb)2), and a hexagonal paving for feedhorns (Nh=(π/(2*31/2))*(fov/Θh)2):

fov 3.5 4.8 7.4 10.0( ) am=

Nb

286

697

1876

3872

538

1312

3528

7283

1279

3117

8385

17309

2336

5693

15312

31609













= Nh

21

50

135

279

39

95

255

526

92

225

605

1249

169

411

1105

2281













=

R.Zylka style for fast calculations [private 
email]: filling with 2θh spacing, so for a 10 
arcmin FOV and 11 arcsec pixels (1.2mm):

NhZ
π
4

2

3
⋅

10 am⋅
22as









2

⋅:= NhZ 675= NhZ 673:=

Zylka/MAMBO style 
vs my optimal filling:

Zylka's pixels size and gaps are the same as MAMBO
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εsg eT( ) 1 exp
1−

2 σ t eT( )
2









−







:=

σ t eT( )
10

2 eT⋅ ln 10( )⋅
:= σ t Teh( ) 0.5= σg eT( )

kg eT( ) π⋅

2 2 ln 2( )
:= σg Teh( ) 1.6=

Decomposing the receiver source angle ratio ΩNb/ΩNh in filling factor and individual pixel 
effective surface in units of λ/D (so pixel sizes in terms of beam solid angle in the sky, not 
angular response through instrument pupil !) one gets:

π
4 ln 2( )⋅

kg Teh( )2⋅ 1.55=
fr ub⋅( )2

0.23=
13.9

fr ub⋅( )2

π
4 ln 2( )⋅

kg Teh( )2⋅
⋅ 2.02=

using width 
of gaussian:

2

π
σg Teh( )2

⋅ 1.55=

Now decomposing the throughput efficiencies (portion of sky it really seen by pixels = sizes 
corrected by the angular response through the instrument pupil, i.e. by the spill-over):

π
4

fr ub⋅( )2⋅ 0.18= εsg Teh( ) 0.91=
13.9

π
4

fr ub⋅( )2⋅

εsg Teh( )
⋅ 2.71= kg Teh( )2

1.4=

Using the same scalling from pixel effective surface to throughput in units of λ2 (= throughput 
efficiency) as for bare pixel, one gets for the horn gaussian beam approximation: 

not= 1 , so the horn is 
not single-moded ?!

AΩeg/λ2 =
π
4

π
4 ln 2( )⋅

kg Teh( )2⋅







⋅ 1.22=

ΩNh 1.5 2.9 6.9 12.6( ) 10
4

as
2⋅= Nh0 j,

π⋅

4 ln 2( )⋅
θh λ0( )( )2

⋅

1.5

2.9

6.9

12.6













10
4

as
2⋅=

Zylka's 
style:

filled array:
π
4

10am( )
2⋅ 28.3 10

4
as

2⋅=

horns: NhZ 1.13309⋅ 11as( )
2⋅ 9.2 10

4
as

2⋅=

Zylka's argument for quick 
calculations: instruments 
source angle ratio ~= 
maping speed ratio:

Zylka's choice to use 2θh (vs 
Θh for me) spacing between 
horns and none (vs fr for me) 
between bare pixels gives:

π 5am( )
2⋅

9.2 10
4⋅ as

2
3.07=

ΩNb0 0,

ΩNh0 0,

2.02=

From III.7: with shot noise only, same filters and without the Feff subetelty, 
the extended source speed ratio = filling factor (Nb/Nh=13.9) * pixel 
throughput ratio (υb/υh=Ωb/Ωh) = ΩNb/ΩNh. But this calculation gives:

13.9
υb

υh
⋅ 2.71=

==> Which is right, and what is the link between Zylka's & Griffin's methods ? 
Reminder: using a slightly different horn shape hypothesis, Griffin has a smaller υh, and find 
a speed ratio =2.9 totally compatible with my method from III.7. 

Reminders: From II.1.: AΩs υ λ,( ) υ λ
2

⋅:= υbare Up( ) π
4

Up⋅:= υhorn u( ) εsg Te u( )( ):=

From I.3.: but ATTENTION ! σt is the width factor of 
the taper function projected on antenna, 
NOT the beamwidth @ the horn (σg) ! 
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NhZ 673=
NhZ 1.13309⋅ 11 as⋅( )

2⋅

0.5 11⋅ as( )
2

3050=

Same argument using my speed ratios:

shot noise +  
buncing noise rfovei v,

1

sreNbhi v,

:= rfove

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3













= 10am rfove0 0,
⋅ 3.1 am=

bare pixels sampling 
the untapered beam at 
1.2mm λ on 3.1 am fov.

Number 
of pixels:

2Fλ horns at 1.2mm 
λ on 10am fovNh2 3,

1105=
π
4

3.1am

Θb λ2( )








2

⋅ 1630=

Same with Griffin, for shot noise only:
bare pixels sampling 
the untapered beam at 
1.2mm λ on 5.9 am fov.

rfovG
1

2.9
:= 10am rfovG⋅ 5.9 am=

π
4

5.9am

Θb λ2( )








2

⋅ 5906=

Remark: as expected for the gaussian beam approximation, 
the same factor as in Downes calculation of Beff appears:

π
2

16 ln 2( )⋅
0.8899=

==> the problem comes from the gaussian approximation 
overestimating the size of the beam so that the throughput is not 
single-moded anymore, which is also obtained with 1/εGg (see I.3.) ! 

In another hand the calculation of the gaussian tappered beam 
throughput using 1/εtg gives 1.12 (see I.3.), not 1 !!!

=> does the truth lies between the 2 results above ?

1

εGg Teh( )
1.22=

1

ε tg Teh( )
1.12=

==> Zylka's method is fast but uses approximations overestimating the actual horns throughput: 
(1) the spill-over is neglected, (2) the taper efficiency is taken into account in the calculation of 
the effective solid angle (through the factor π/4ln(2)), but it uses the gaussian approximation of 
the beam giving a throughput bigger than expected for a single-moded feedhorn ! 
Nevertheless this overestimation of horn throughput is smaller than the effect of the non optimal 
2θh inter pixel gap instead of the more compact 2Θh so that in the end his calculation of bare 
pixel vs horn receiver source angles gives 3.07 instead of 2.02, whereas using the single moded 
throughput and optimal filling as Griffin and I in III.7 gives 2.71 !!

ATTENTION: both Zylka's and Griffin methods assume implicitly that the Signal to 
Noise is proportional to the detector effective size; wich implies the noise must be 
poissonian. So they are valid only when the shot noise dominates (bunching noise 
negligible, which may not be true !). 

Zylka's suggestion for an alternative reformulation of the instrumental comparison:

FOV ratio (rfov) of a filled array with the same integrating angle as a horn array.

For a pixel architecture p: ΩNp=ap*fovp
2, where a is a multiplicative factor. For similar fov the 

speed ratio is srebh = ΩNb(fov)/ΩNh(fov) = ab/ah ==> fovb = fovh/(srebh)1/2.

Using Zylka's 
example:

=> fov of a filled array 
equivalent to a 10 am horns:rfovZ

1

3.07
:= rfovZ 0.6= 10am rfovZ⋅ 5.7 am=

bare pixels Nyquist 
sampling a horn HPBW 
at λ=1.2mm on 5.7am fov.

Number 
of pixels:

11 as horns 
for 10 am
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Ω1hmkh

97.6

26.5

5.7

4.9 10
2−×

56.9

6.3

0.4

2.6 10
4−×















deg
2=Ω1hmkb

10.0

2.4

0.5

5.1 10
3−×

6.6

0.8

5.6 10
2−×

3.9 10
5−×















deg
2=

IS THIS 
CRITERIA 
REALLY 
USEFUL ?

Ω1hmkhi v,
1000 Ωhti

⋅
1hr

tpth1i v,

⋅:=Ω1hmkbi v,
1000 Ωbti

⋅
1hr

tptb1i v,

⋅:=Thus 

Ωht

560

230

85

41













as
2=Ωbt

86

35

13

6













as
2=Ωhr

750

308

114

55













as
2=Ωbr

109

45

17

8













as
2=

Ωht εsg Teh( ) λ
2

A
⋅:=Ωbt

π
4

Θb λ( )2
⋅:= ? or ? Ωhr

π θh λ( )2
⋅

4 ln 2( )⋅
:=Ωbr Θb λ( )2

:=

Same problem as before: should I use direct Ω, or corrected by throughput 
efficiency, or by pixel apperture efficiency (since mJy refers to point source) ?

Solid angle 
seen by a pixel:

tpth1i v,

1

2

NEPThi v,

Pptohi v,











2

⋅:=tptb1i v,

1

2

NEPTbi v,

Pptobi v,











2

⋅:=
Time to detect a 
1mJy source at 1σ

Solid angle mapped in the sky in 1 hour at a sensitivity of 1mJy at 1σσσσ level with 1000 
pixels (ΩΩΩΩ1hmk):

Desert's suggestion for another eloquent instrumental comparison:

Beside the mismatching numbers due to different hypothesis, there's one interesting 
conclusion of this reformulation: instrument preformances are much more greedy 
for large FOVs when they use feedhorns than when they use filled arrays.

π
4

3.3am

Θb λ2( )








2

⋅ 1848=10am rfove0 0,
⋅ 3.3 am=rfove

0.3

0.3

0.4

0.3

0.3

0.3

0.3

0.3













=rfovei v,

1

spr_mapbhi v,

:=

BUT THIS IS TRUE ONLY FOR EXTENDED SOURCES SINCE WE DON'T USE THE PIXEL 
EFFICIENCY !!! Extending this argument to point sources makes sense only for point source 
extraction from map, but is obviously totally meaningless for point source direct detection:
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