Second run of NIKA at the 30m telescope

Samuel Leclercq 01/2011

Table of contents

- Reminder 1: continuum detectors at the 30m telescope
- Reminder 2: NIKA 1 at the 30m MRT (10/2009)
- NIKA 2: upgrades and lab tests
- NIKA 2 at the 30m MRT (10/2010): Preparation
- NIKA 2 at the 30m MRT (10/2010): Observations
- Data analysis and results
- Conclusion

Reminder 1: Purpose of the continuum prototypes

Test new technologies in view to replace MAMBO-2 with a more powerful instrument:

- Better sensitivity: 35 mJy· \sqrt{s} ... \rightarrow 5...10 mJy· \sqrt{s}
- Better coverage of the focal plane: horns → filled array
- Bigger field of view: $4' \rightarrow >6'$ (> $\times 2$ area)
- More bands: 1.2mm → 1.2mm & 2.1mm
- Possibly intrinsic sensitivity to polarization
- \Rightarrow More pixels: 117 \rightarrow 2000..7000
- \Rightarrow Mapping speed more than $\times 100$ faster*!
- ⇒ New observing window, never available until now

```
* Mapping time: t ~ NEFD<sup>2</sup>·(\Omega_{map}/\Omega e_{array}) 
 \Rightarrow t_{MAMBO-2} / t_{5'\times5'.0.5F\lambda,filled} = (35^2/(117\cdot(11/60)^2)) / (8^2/6^2) \approx 150
```

Reminder 1: Continuum detector technologies

MAMBO 2:

semi-conductor bolometers

GISMO:

superconducting bolometers

250 GHz $^{\sim}35$ mJy $\cdot\sqrt{s}$ 117 pixels $\pi_{/4}$ 4 $^{'2}$ FOV

150 GHz ~25 mJy·√s 128 pixels 4'×2' FOV

NIKA 2, October 2010 run report

NIKA (1):

kinetic inductance detectors

150 GHz ~150 mJy.√s 40 pixels 1'×1' FOV

Reminder 2: NIKA 1 at the 30m MRT (10/2009)

Sensitivity after data processing: $NEFD_{HPBW} = 120 \text{ mJy} \cdot \sqrt{s}$ $NET_{HPBW} = 15 \text{ mK} \cdot \sqrt{s}$

Background photon noise limit: $NEFD_{HPBW} \sim 7 \text{ mJy} \cdot \sqrt{s}$

 $NET_{HPBW} \sim 1 \text{ mK} \cdot \sqrt{s}$

24/01/2011

NIKA 2, October 2010 run report

NIKA 2: upgrades & lab tests

Sky simulator: cold black body for optical tests in lab (T adjustable from 50 to 300 K) ~5mm "planet" on X-Y table

NIKA 2 new elements:

- Optics (biconic mirror, 4 lenses, polarizer, filters)
- Cryostat: longer baffle, 2 array holders
- 2.1 mm: Néel-IRAM 144 pixels, $f_0 = 1.5$ GHz, $\Delta f_{\text{mux}} = 2$ MHz
- 1.3 mm: SRON 256 pixels, $f_0 = 5$ GHz, $\Delta f_{mux} = 4$ MHz
- Sensitivity goal: ~×4 better than 1st run
- Electronic: 2 Casper Roach Boards (230 MHz bandwidth), IRAM 1.5 GHz amplifier, Caltech 5 GHz amplifier

NIKA 2: upgrades & lab tests

 $\lambda/4$ waveguide resonator, Twin-slot antenna, 1.6mm Si micro-lenses

Pixels

-1.3 mm band (220 GHz) SRON pixel size = 1.6mm = $0.8F\lambda = 11$ " FWHM on the sky; 62 used in run \rightarrow ~1.5' FOV

Capacitor + Inductive meander (~ solid absorber) => ~ free space Z

50 mK/Hz^{1/2} (1Hz) \leftarrow Sky simulator NET = $S_n(f)/R(T)$ 6 mK/Hz^{1/2} (1Hz)

NIKA 2: upgrades & lab tests

Transmission profiles: normalized instrument components & PV atmosphere at zenith

Bands spectral response obtained with a Martin-Puplett interferometer

Computer

NIKA 2: upgrades & lab tests

Electronics

Based on 2 **CASPER ROACH Boards** from the **Open Source project** (development of 128 channels modules for KIDs readout).

- Rubidium clock reference
- 466 MSPS
- 233 MHz readout
- 72 (1mm band) & 112 (2mm band) "lockin like" tone generator
- each pixel response broadcasted at 22Hz

- A) High frequency synthesizer
- B) Splitter
- C) Mixer
- D) Attenuator
- E) Amplifier
- F) Low pass filter

Frequency multiplexing

1 tone / pixel on a feed line

Individual pixel response = pair of in-phase (I) and quadrature (Q) values.

NIKA 2 at the 30m MRT: October 2010 run plan

LST = 8h

Preparation: mounting, alignment, cooling, cabling & software, detectors tuning, pointing, focus, flux calibration on planets

Observations: selection of 75 sources based on variety and references in literature for comparison; radio sources (IRAM catalog), galactic sources, galaxies, quasars, clusters of galaxies => Fluxes: $(\le)100 ... (\ge)0.01$ Jy

NIKA 2 at the 30m MRT: Installation

NIKA 2 at the 30m MRT: Preparation phase

(acquisition soft, merging with telescope data, detector tuning, ...)

Control room

Tuning the resonances

Mars maps (pointing, focus, calibration...)

NIKA 2 at the 30m MRT: Preliminary observations

Mapping planets

(... calibration)

- ⇒ relative positions of arrays in the sky (pointing)
- ⇒ relative pixel responses (gains)
- ⇒ beam sizes & height vs M2 shifts (focus)
- ⇒ known signal vs noise (sensitivity)
- ⇒ response to various fluxes (linearity)

Mars, Neptune, Uranus, Ganymede,

Pixels of 1mm and 2mm arrays used for the observations (green [orange] = inside [outside] the bandwidth of the tones generators)

NIKA 2 at the 30m MRT: Preliminary observations

(... calibration)

Average T = 210K« raw » S/N $\theta = 4.1$ " on Mars: $F/T = 2k(\pi \cdot \theta^2/4)/\lambda^2$

NET = T/(S/N) NEFD = F/(S/N)

Signal:
Noise:
Mars flux:

S/N NEFD (1Hz) NEP (1Hz) **2mm 1.3mm** 2-4 kHz 10 kHz 2 Hz/Hz^{0.5} 16-20 Hz/Hz^{0.5}

40Jy 107Jy

≈ 1000 Hz^{0.5} ≈ 500 Hz^{0.5} ≈ 30 mJy/Hz^{0.5} ≈ 150 mJy/Hz^{0.5}

 $\approx 0.23 \text{ fW/Hz}^{0.5} \approx 3 \text{ fW/Hz}^{0.5}$

NEP (1Hz) ≈ estimated by sky simulator!

Flat and stable noise spectra

⇒ Sensitivity still dominated by pixel, but much lower than 1st run AND large bandwidth

NIKA 2 at the 30m MRT: Example of problems

NIKA 2 at the 30m MRT: Observations

Radio sources, galaxies, clusters of galaxies, quasars

Example of Quick-Look sum maps with causal filter obtained with the 2 arrays

1.3_{mm}

2 mm

>1 Jy sources (DR21OH, MWC349, NGC7027...) in real time, few 100 mJy (NGC 1333...) seen quickly

NIKA 2 at the 30m MRT: Observations

Radio sources, galaxies, clusters of galaxies, quasars

Example of Quick-Look sum maps with causal filter obtained with the 2 mm array

Pixels characteristics & pointing

- 62 at 1mm + 98 at 2mm = 172 valid pixels / 224 electronics outputs (52 double, blind, bad, off resonance, undefined)
- FWHM: 12.5" at 1mm, 16" at 2mm (focus from QL, not redone yet...)
- Pointing accuracy: array optical axis < 1", pixel < 2", source to source ~1-2"
- Simple method: offset, rotation, scaling on EMIR pointing model
- Source Az/El offset corrections done offline from nearest planet/quasar data

Calibration

- Only using Response in Frequency signal (better than run1)
- Assumed to be linear with power
- From I and Q, get complex phase on calibration circle, then translate to equivalent frequency shift, as measured during KID tuning

Photometry (current status, work in progress)

- 10% reproducibility within a planet (same planet observed at different days)
- Neptune (19.5", 7.4Jy) from Uranus (54.8", 20.7Jy) calibration: (16.9", 7.0Jy) = 15% precision
- MWC349 using Mars one day and Uranus another day: fluxes are off the official values (2.01 and 1.49 Jy) by 12% and 30%, but they are stable
- Atmosphere opacity correction: use $\tau(225\text{GHz})$, a v^2 law, and elevation
- To be done: intercalibration(flat-field), Skydips, OnOff (wobbler) data

Map-Making

- 1 map per kid per scan produced with interpolation to the 4 nearest grid points
- Pointing: use on-the-fly center coordinates and beam map offsets
- Noise evaluated at detector map level by histogram fitting. Pixel correlation corrected

Filtering

- Necessary to remove the zero level
- Bandpass for sky noise decorrelation is 10-110 arcsec
- Only strong sources are masked (no bias for the detection of weak sources)

Radio sources, galaxies, clusters of galaxies, quasars 1.3 mm

2 mm NIKA 2, October 2010 run report

Radio sources, galaxies, clusters of galaxies, quasars

2 mm NIKA 2, October 2010 run report

				Average 2mm RF Rac
Source	Integration	Flux measured	NEFD measured	Cas A (2
	time [s]	(1mm , 2mm)	(1mm , 2mm)	52
		[mJy]	[mJy·s ^{1/2}]	50
Strong sources (no sky decorrelation)				43
Neptune	1087	17000,7000	2400, 4200	
SgrB2(FIR1)	900	76000 , 17700		**c _a } ∆o ∞.
MWC 349	495	1700 , 1000	1100 , 1100	58°44' 23 ^h 24 ^m 00 ⁸ 23 ^m 50 ⁸ 40 ⁸ 30 ⁸ Average 2mm RF Ra
IRC 10420	2410	94 , 21	530 , 120	os Crab (2mm
Weak sources (sky decorrelation)				04
IRC 10420	2410	94 ± 12 , 21 ± 1	371,45	02
Cyg A	2200	269 ± 34 , 87 ± 22		22°00'
NGC 1068	1260	142 ± 25 , 66 ± 3		58
PSS 2322	1950	2 ± 12 , 1.1 ± 0.6	330,29	21°56' 05 ^h 34 ^m 50 ^s 40 ^s 30 ^t

- ⇒ Strong sources: NEFD dominated by source noise (photometric reproducibility)
- \Rightarrow Weak sources: conservative NEFDs (mJy· \sqrt{s}): 370 @ 1mm, 40 @ 2mm
- ⇒ NET ≈ 4 mK· \sqrt{s}

Perspectives

Data analysis:

- Reduce all scans homogeneously (v2 in progress, v3 in January)
- Improve on photometric accuracy (sky noise flat field, IQ circle calibration, next runs: modulate the frequency carrier)
- Improve on sky noise decorrelation (detector choice, map vs sky noise timeline)

Hardware for next run:

- ◆ Cryostat → Stronger magnetic field shielding. Pulse Tube Cooler ?
- Filters → from NIKA 2010
- Splitter → Dichroic ?
- Detectors 2mm → Same as NIKA2010 (best Al LEKID tested in laboratory reaches the target sensitivity!); dual-polar if dichroic
- Detectors 1mm → Antenna or LEKID (best sensitivity and number of pixels)
- Pixels → 224 per array over a 400 MHz band (see electronics). AR coating ?
- Electronics → «NIKEL» from LPSC (> 256 channels, > 400 MHz band)? (ROACH is backup if LPSC not ready). 1 kHz frequency modulation for better photometry. Automatic frequency lock on resonances.

Conclusion

- Unpacking to 1st astronomical light in only 24 hours! (4 days for 1st run)
- ~<10% bad pixels, number of pixels limited by readout electronics
- Alignment and focus extremely quick and easy (M6 attached to cryostat)
- Control software improved since 1st run, real time quick look analysis very convenient
- Strong to moderately weak (few mJy) sources observed
- Non optimal sky calibration, but satisfactory for this "engineering run" with few arc seconds pointing accuracy and better than 30% accuracy on absolute photometry

Sensitivity: conservative NEFD (data reduction still in progress)

- = 370 for the 1mm array \rightarrow ~10x worse than MAMBO, but OK for a 1st time
- = 40 mJy·s^{1/2} for the 2mm array \rightarrow >3x better than 1st run ! Still ~4x to gain to reach the background limit
- → Successful run: lot of progress done since 1st run (one year before), only minor problems at the telescope, sky simulator validated, improvements foreseen

1st time that

- KIDs achieve such a high sensitivity on a telescope (almost = state-of-art APEX SZ TES)
- so many KIDs are successfully installed on a telescope
- so many detectors observe the sky at the 30m MRT
- a dual band multi-pixel continuum instrument is used at the 30m