

Bolometers at the 30m telescope: future instruments, GISMO & other prototypes

S.Leclercq 28/04/2009

28/04/2009

SAC meeting IRAM Grenoble

1

Content

- 1. Specifications for the future instrument
- 2. 2007 & 2008 GISMO runs
- 3. Néel/SRON/Cardiff prototype(s)
- 4. Conclusion & next steps

Bands available at the 30m

ATM opacity model at Pico Veleta, for winter (260K) and summer (300K) with good weather (1mm of water vapour) and bad weather (7mm)

^{1.} Simulations for an optimal bolometer array Efficiencies, pixels types and FOV

 $\mathbf{B}_{\mathrm{eff}} = \begin{vmatrix} 73 \\ 54 \\ 42 \end{vmatrix} \%$

Aperture efficiency = relative flux losses: $\varepsilon_a = A_e / A$ Beam efficiency = relative power in main beam Forward efficiency = relative power from $\Omega = 2\pi$

$$\mathbf{\varepsilon}_{a} = \begin{pmatrix} 61\\ 45\\ 35\\ 16 \end{pmatrix} \%$$

Measures 2007 [C.Thum]: ϵ_0 = ohmic losses * blockage * 13dB taper * alignment * Ruze @ 86GHz = 65 %

(00)

 $2F\lambda$ round 10dB edge monomode

feedhorns in a compact array

Ruze (Surface RMS) : $\varepsilon_a(\lambda) = \varepsilon_0 \exp(-\Sigma_c(\sigma_{hc} 4\pi R/\lambda)^2)$

$$\mathbf{F}_{\mathrm{eff}} = \begin{bmatrix} 92\\90\\86\\75 \end{bmatrix} \%$$

 $\eta_{\text{extended}} < 65 \%$

Pixel types

28/04/2009

 $0.5F\lambda$ square bare multimodes pixels in a filled array

Global pixel efficiency

Number of pixels for 2 fields of view

```
MAMBO 2: 117 pixels
(feedhorns), FOV=3.5'
```

 $\eta_{\text{extended}} < 50 \%$ $\eta_{\text{point}} \sim \epsilon_a/4$ FOV = (4.8')10')

540 2400 Square 1400 5700 $N_b =$ grid:

SAC meeting IRAM Grenoble

4

^{1.} Simulations for an optimal bolometer array

Bands: $\lambda = [2mm; 1mm]$

Sensitivities

Background sources: atmosphere, ground, telescope, cryostat.	0.5F λ bare multimode, $\eta_{\text{InstNoRuze}} \sim 45\%$	$2F\lambda$ feedhorn monomode, $\eta_{InstNoRuze} \sim 60\%$
Collected power (1mmwv)	P _{bkgb} = [7 ; 20] pW Benchmark: Jupiter ~10s pW	$P_{bkgh} = [40; 110] pW$ V, 1mJy point source ~10s aW
Noise Equivalent Power $[(Shot)^2 + (Bunching)^2]^{1/2}$ Optimal pixel if $\eta_{PixAbs} = 90\%$:	$NEP_{bkgb} = [50; 100] aW/Hz^{1/2}$ $NEP_{pixb} \sim [20; 30] aW/Hz^{1/2}$	$NEP_{bkgh} = [200; 400] aW/Hz^{1/2}$ $NEP_{pixh} \sim [70; 140] aW/Hz^{1/2}$
	4×0.5Fλ bare, OTF	2Fλ horn, OnOff
Noise Equivalent Temperature (extended sources $\rightarrow F_{eff}$)	$NET = 0.4 \text{ mK} \cdot \text{s}^{1/2}$	$NET = 0.6 \text{ mK} \cdot \text{s}^{1/2}$
Noise Equivalent Flux Density (point sources \rightarrow diffraction: $\varepsilon_a < \eta_{diffpix} < B_{eff}$)	NEFD ~ 3 mJy·s ^{1/2}	NEFD ~ 4 mJy·s ^{1/2}

MAMBO: NEFD ~ 40 mJy·s^{1/2} (~10x higher than expected to get it background limited).

SAC meeting IRAM Grenoble

1. Expectations for the future science grade instrument

- At least 2 colors (bands / channels)
- Current preferred colors: $\lambda = [1.25; 2.05] \text{ mm}$ (v = [146; 240] GHz)
- Total efficiency per pixel > 40%
- **Background limited** instrument : $NEP_{pix} < NEP_{bkg}/3$
- Sensitivity: ~0.4mK·s^{1/2} & ~3mJy·s^{1/2} @ 1mmwv, and stay <1mK·s^{1/2} & <10mJy·s^{1/2} in a large dynamic range (15-150 K_{RJ} background)
- Preference for fully sampling $(0.5F\lambda)$ pixels (advantage for mapping)
- Preference for filled array (best to fight anomalous refraction in sky noise)
- Field Of View $\geq 6'$
- Preference for multiplexing since FOV>6' \Rightarrow 100s 1000s pixels
- Negligible sensitivity to stray-lights
- Cost < $6M \in$ including ($5M \in$ as dedicated time $\Rightarrow < 1M \in$ cash)

GISMO

GSFC (J.Staguhn)

- 8x16 = 128 pixels
- Band: $\lambda = 2mm$ (ideal for high z dusty galaxies)
- 1st filled array (no gap) @ the 30m
- 14"×14" bare-pixels \Rightarrow 1F λ , but S/N optimized
- TES detectors (BUG architecture), DC coupled, background limited
- SQUID 4×32 multiplexers & amplifiers (NIST)
- Data recorded in proprietary format after merging with telescope parameters
- 260mK ³He sorption cooler

 $NEP_{pixG} \sim 40 \text{ aW/Hz}^{1/2}$

SAC meeting IRAM Grenoble

GISMO 1st run (11/2007)

In the 30m receiver cabin

> GISMO in front of M3 (elevation>30°)

> > Electronics

New M8 (Goddard) New M7 (Goddard)

28/04/2009

GISMO 1st run (11/2007)

Tests, alignment, 1st light

25% pixels dead (bias line broken), 25% weird, 50% good.

Alignment and focus easy thanks to real time monitoring (hand in beam, liquid N_2 load, Mars).

Problem: apparent bigger FOV than M6 allow \Rightarrow hot stop on cryostat window \Rightarrow aperture < 30m (2008 studies showed the problem was due to the baffling).

Interface between GISMO and telescope data, control of pixel bias via SQUIDs feedback, pointing, wobbling: all OK. Saturate on strong source (>35pW) even with 45% grey filter.

Observations showed no benefit for using the wobbler (OnOff).

Very good weather (<1mmwv most of the time).

Some astronomical sources

Orion Nebulae

GISMO 1st run (11/2007)

Observations outcome

Sensitivity observed: rms ~ 15 mJy after 10 min \Rightarrow ~ 100 mJy in 1 sec

Corrections:

- 50% of bad pixels
- Additional aperture stop
- "high" background (sky and mirrors)

Estimated system NEFD~15mJy·s^{1/2}

• Observed weak sources

• Skydips

• ~20% background from optics

(8 mirrors = 16 K, good sky = 40 K)

Major issues: hot spillover / warm optics / bad pixels / electromagnetic pickup / MUX shielding / grey filter / observing modes (all OTF) / data handling & reduction

Improvements

Detector:

- New detector circuit and readout boards (new biasing lines, more robust)
- Better magnetic shielding of SQUIDs
- New cold baffles
- Shutter (no neutral density filter)
- Battery opto isolated
- Software (SQUID tuning & data)

Telescope:

- Lissajou observing mode
- PAKO routines for GISMO

Tests, alignment, 1st light

>80% pixels working, but a ground loop cause a crosstalk from the SQUIDs of one column to others \Rightarrow shutdown 25% pixels.

Good detector noise spectra with dewar window closed, much better than 1st run in receiver cabin.

Interface GISMO-telescope, pixels control, observing modes: all OK.

Internal calibration source not usable due to LED misalignment.

Worst weather than 1st run (very cloudy).

1st order data reduction software OK.

Sweep telescope \Rightarrow pickup of earth magnetic field \Rightarrow much lower than sky photon noise (and than 1st run) \Rightarrow good SQUIDs shield.

Some astronomical sources

grey: GISMO 2mm, color insert: VLA 21cm

Some astronomical sources

Cassiopeia A

Cas_A

SAC meeting IRAM Grenoble

Observations outcome

NEFD~20mJy·s^{1/2} from pixel time streams ~ close to background photon noise (bad weather). But maps show $\times 5$ higher noise \Rightarrow problem with pixel gain in data reduction ?

Main improvements of run 2 vs run 1:

- Decrease in pickup noise & hot load on detector.
- Pixel yield significantly improved.
- Stray beam eliminated.
- One ground reference for the instrument.
- Enhanced tunability of SQUIDs and detectors.
- Mapping efficiency using Lissajous scan pattern.

The results from run 2 include:

- High-quality image of Cygnus A, an image of Mon R2 IRS 2.
- High redshift sources (APM08279+5255, SDSS J1148+5251, PKS 2322+1944,...).
- Cold dust content of Arp220, NGC 660, NGC 1068 and NGC 891
- Map of Orion molecular cloud including OMC-2, and OMC-4, and IRDC30.
- Numerous quasars and stars as system characterization.

Issues: noise in maps (in progress) / SQUIDs crosstalk (fixed) / calibration LED (fixed)

3. Other bolometer prototypes for the 30m History & collaborators

- 2 years ago we sent a call for letter of interest about new bolometers for the 30m.
- 6 labs answered positively: GSFC, Néel, CEA, Cardiff, MPIfR, SRON ⇒
 different technologies: TES, Semi Conductors, KIDs ; filled arrays, feedhorns.
- 10/2008 Bolo technical meeting (Sky noise, Stray lights, ...) ⇒ triggered collaboration Néel (NbSi, Cryostat) + SRON (KIDs, FFT cards) + Cardiff (KIDs, filters), GSFC continues with GISMO (TES), CEA and MPIfR have adaptation projects (PACS-ArTéMiS and LABOCA) but currently inactive.
- Ph.D. student (M. Roesch) @ IRAM started KIDs studies with Néel.

Néel/DCMB (A.Benoit)

- Nb_xSi_{1-x} high impedance
- 204 microbolometers
- Antenna-coupled
- Diffraction limited (v = 220GHz)
- $2x2mm^2$ pixels, $\lambda = 1.5, 2, 3 mm$
- Time domain multiplexing (QPC-HEMTs)
- 120K JFETs amplifiers
- Telecentric system (high Strehl ratio), HDPE lenses
- 100mK ³He-⁴He dilution fridge optimize dynamic
- Horizontal cryostat with cold baffle
- Other works in DCMB (TESs, SQUIDs, Hot e-, KIDs, simulations,...)

28/04/2009

SAC meeting IRAM Grenoble

Tests: good homogeneity, thermal & electrical responses, BUT $\eta_{pix} < 5\%$!

SRON (A.Baryshev) / Cardiff (Ph.Mauskopf)

- KIDs (SPICA-SAFARI)
- Need micro lenses array
- Very low dark lab NEPs

- TES (SCUBA2, CLOVER)
- LEKIDs
- Filters
- Lenses coating, polarizer, FTS, modeling

KIDs: photons break Cooper pairs, create quasiparticles, change kinetic inductance \Rightarrow system resonance (A, f, Φ); simple manufacture & kilo-pixels multiplexing

NIKA (Néel IRAM KIDs Array) or DCMB

- [Néel + SRON + Cardiff + Roma La Sapienza + MPIfR + IRAM]
- Collaboration started after October 2008 bolometer meeting at IRAM.
- Goal: 2mm band prototype at the 30m telescope in 2009.
- KIDs (All collaborators) or NbSi (DCMB).
- MPIfR FFTS or Berkeley CASPER boards.
- Néel optical cryostat.
- Filters (Cardiff / Néel).
- HDPE lenses and 3 mirrors (Néel + IRAM).
- Interfacing with telescope position data (Néel + IRAM).

3.

Requirements to test a prototype at the 30m

- Array with at least 32 pixels fully characterized with lab tests.
- Sensitivity for useful tests and first light science: $\eta_{pix} \ge 0.5 \& \text{NEP}_{inst1F\lambda} < 10^{-16} \text{W/Hz}^{1/2}$ \Rightarrow good weather: NET~0.5mK·s^{1/2}, NEFD~8mJy·s^{1/2}, $t_{10mJy@3\sigma} \sim$ few seconds.
- Preliminary frequency range of optimization is 1-20 Hz, noise spectra will be taken.
- Optical measurements: valuable illumination of the telescope and no stray-light.
- Instrument control & mapping software OK to avoid down time during telescope tests.
- The prototype components must fit in the available space in the receiver cabin.

Objective: observation of ~10mK / ~100mJy sources in few seconds...

25

Conclusion & next steps

- Compared to MAMBO2 the future science grade instrument will have to show a significant improvement in imaging capacities (sensitivity, FOV, number of pixels)
- A number of labs answered our call for this project
- 2 prototypes: GISMO and NIKA
- 2 GISMO runs showed encouraging results
- NIKA is in preparation
- GISMO improvements, instruments switching bench, data processing $(SHARC2 \rightarrow MOPSIC)$
- Néel 6 arcmin FOV instrument project (max possible on 4 inches wafer)
- IRAM 7+10 arcmin optics: 2 steps, 3 solutions for motorization studied (Excel/Zemax, motors contractor F.Hidalgo, cinematics A.Perigouard, 3D modeling F.Copé)

Conclusion & next steps

