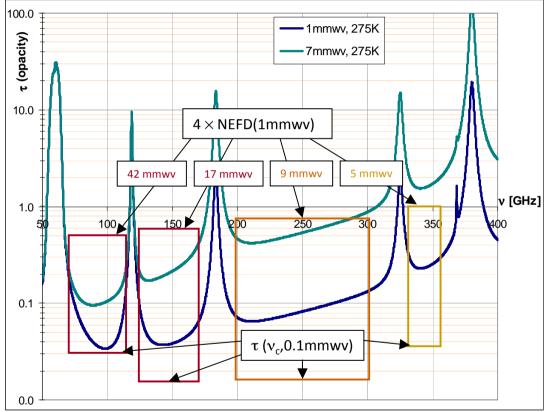


# Testing of current "bolometric" prototypes: GISMO, NIKA & Next Steps

Samuel Leclercq




#### Content

- 1. Reminders
- 2. NIKA 1<sup>st</sup> run at the 30m telescope
- 3. GISMO 3<sup>rd</sup> run at the 30m telescope
- 4. Next Steps
- 5. Conclusion

#### 1.1. Bands, pixels, and sensitivities

Atmosphere opacity model for Pico Veleta

(275 K at telescope site, 1 & 7 mm of precipitable water vapor)

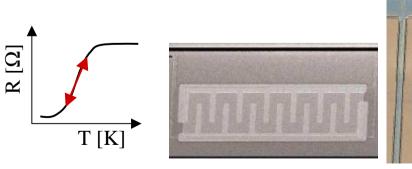


 $\Rightarrow$  90 & 150 GHz always, 250 GHz often, 350 GHz few weeks.

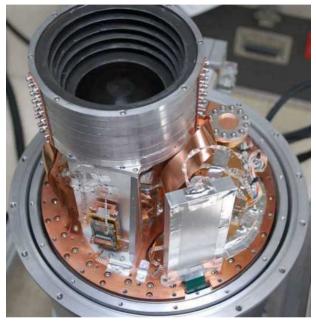
Main characteristics of the bands available

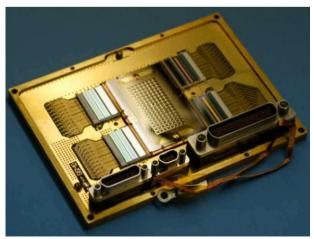
| Band<br><b>center</b>     | Band<br><b>width</b><br>max | Airy<br>FWHM<br>(band<br>center) | Number<br>of 0.5Fλ<br>pixels in<br>7' FOV | "good<br>sky*"<br><b>NEFD</b> /<br>HPBW |
|---------------------------|-----------------------------|----------------------------------|-------------------------------------------|-----------------------------------------|
| 92 GHz<br><b>3.25 mm</b>  | 45<br>GHz                   | 22.6"                            | 1100                                      | 4<br>mJy·s <sup>1/2</sup>               |
| 146 GHz<br><b>2.05 mm</b> | 45<br>GHz                   | 14.5"                            | 2700                                      | 5<br>mJy·s <sup>1/2</sup>               |
| 250 GHz<br><b>1.2 mm</b>  | 105<br>GHz                  | 8.8"                             | 8000                                      | 5<br>mJy·s <sup>1/2</sup>               |
| 345 GHz<br><b>0.87 mm</b> | 25<br>GHz                   | 6.2"                             | 15000                                     | 30<br>mJy∙s¹/²                          |

In the 4 bands "good sky\*" NET<sub>beam</sub>~ 0.5 mK·s<sup>1/2</sup>


1 mm pwv and 60° elevation

MAMBO 2: 117 feedhorns, 3.5' FOV, 250 GHz, ~ 40 mJy·s<sup>1/2</sup>/beam (OnOff & 4mm pwv). Photon noise limit ~ 8 mJy·s<sup>1/2</sup>


<sup>\*</sup> My definition of a "good sky" @ PV:


#### 1.2. GISMO (Nasa GSFC)

- Transition Edge Sensors
- $v = 150 \text{ GHz} (\lambda = 2 \text{ mm}), \Delta v = 22 \text{ GHz}$
- 0.9 F $\lambda$  bare-pixels (15"×15" in sky)
- Unpolarized, pixel absorption = 90%
- DC coupled ⇒ total power
- 8x16 = 128 pixels
- 1st filled array @ the 30m
- SQUID amplifiers & multiplexers (4×32)
- 260 mK <sup>3</sup>He sorption cooler

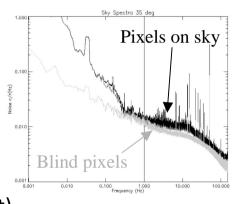




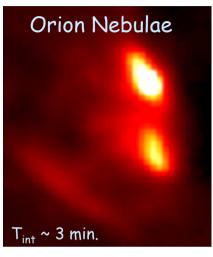


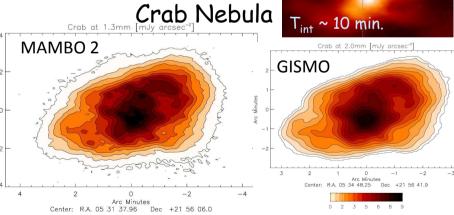


#### 1.3. GISMO 1<sup>st</sup> run (11/2007)


#### Results

- 1st astronomical source few hours after installation
- Realtime display & interface with telescope OK
- 50% useable pixels
- map NEFD ~ 200 mJy·s<sup>1/2</sup>
- $\Rightarrow$  not optimal (see problems)

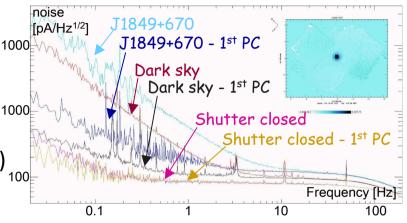

Article: Staguhn et al, SPIE 2008

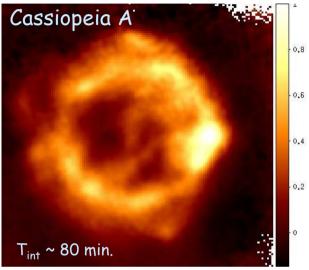

#### **Problems**

- Broken bias line (25% pixels lost)
  & 25% weird pixels
- Baffling undersized => warm field stop needed against hot spillover
- Saturation at 35 pW load (150 K sources with 40% ND filter)
- Some EM pickup







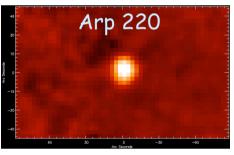



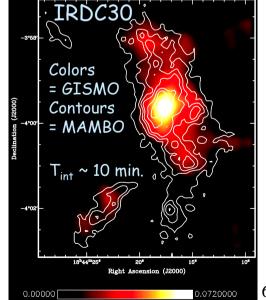

#### 1.4. GISMO 2<sup>nd</sup> run (10/2008)

#### **Upgrades**

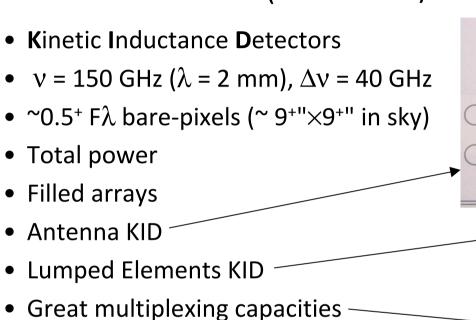
- Detector board
- Baffle
- EM shield
- Shutter
- Lissajou (telescope)



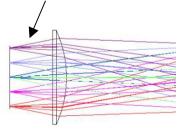


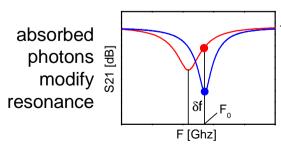


#### Results

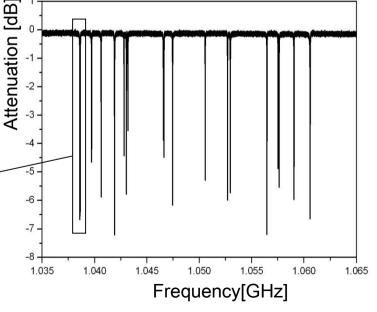
- 60% useable pixels
- map NEFD  $\sim$  45 mJy·s<sup>1/2</sup>
- $\Rightarrow$  better but cloudy weather


#### **Problems**

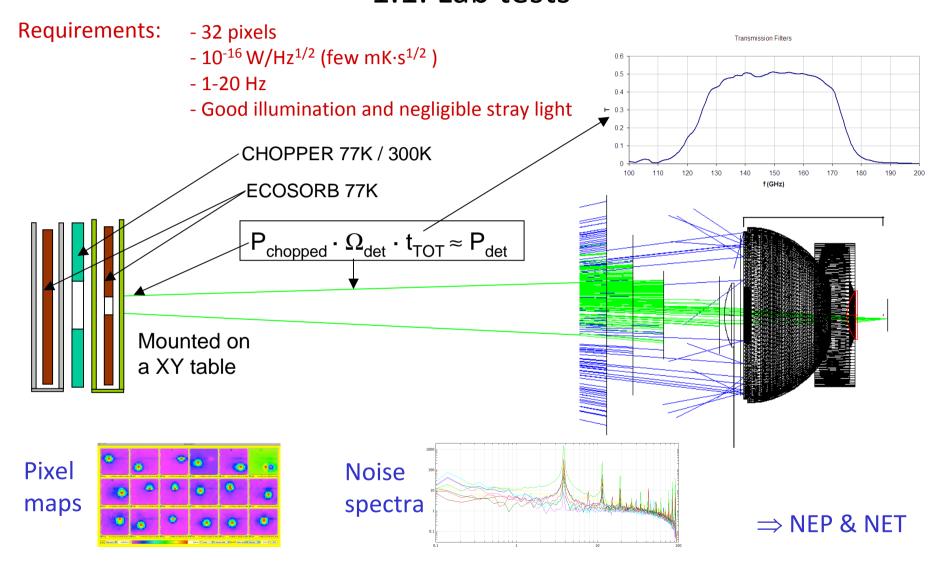
- Short in 1 MUX (25% pixels lost)
- Excess noise (in maps, some pixels not used)
- Anti-vibration table mismatch (shocks)
- Internal calibration LED misaligned



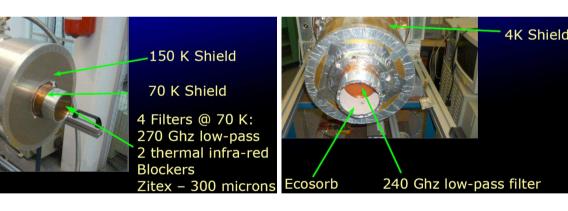


#### 1.5. NIKA (CNRS Néel / IRAM / AIG Cardiff / SRON)

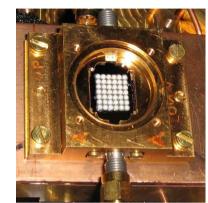



Great multiplexing capacities
 80 mK <sup>3</sup>He-<sup>4</sup>He dilution fridge
 Telecentric optics, reflective baffle









## 2. NIKA 1<sup>st</sup> run (10/2009) 1.1. Lab tests




#### 1.2. Instrument

- $7 \times 6 = 42 \text{ A-KID } 0.5 \text{ F} \lambda$ , MPIfR "Bonn" electronic
- $6 \times 5 = 30$  LEKID  $0.75F\lambda$ , "Bonn" or Néel FPGA
- Polarized, absorption = 30%
- All cryogen fridge (He bottles)
- Detector noise > photon noise

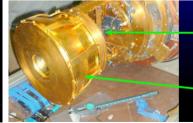








Thermalized SS Coax


Detector Array

NbTi Coax + 10 dB Attenuator @ 100 mK (not shown)

20 dB Attenuator + DC block

4K HEMT Amplifier





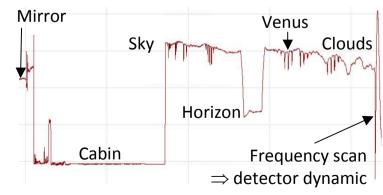

Detector array behind 127 to 170 Ghz bandpass filter

Baffle (Ellipsoid mirror)



#### 1.3. Installation in the 30m cabin












#### First light



#### 1.4. Calibration

<u>Geometry:</u> Detector  $\leftrightarrow$  Nasmyth  $\leftrightarrow$  AzEL  $\leftrightarrow$  RaDec  $\Rightarrow$  Detectors positions recovered @ ~2" level

#### **Sensitivity:**

Venus | Mars

angular diameter = 10.7 | 7.5 "

Temperature = 232 | 205 K

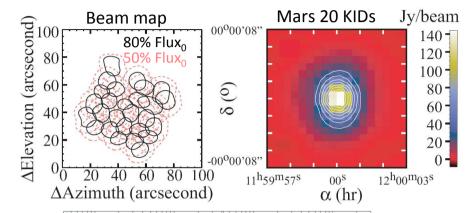
HPBW [Pixel\*2mm\_Airy] ~ 18 | 19 "

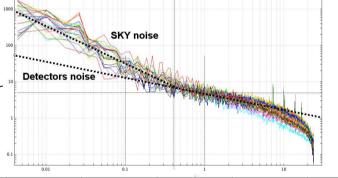
Effective T =  $232 \cdot (10.7/18)^2 \cdot 50\%$ 

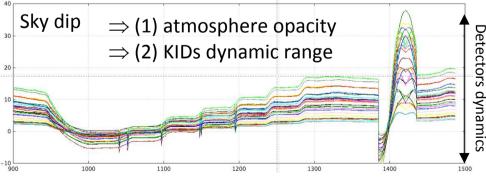
 $205 \cdot (7.5/19)^2 \cdot 50\% = 41 \mid 16 \text{ K}$ 

Pixel S/N (planet signal / noise spectra) ◀

~= 500 | 1000 Hz<sup>1/2</sup> @ 1Hz

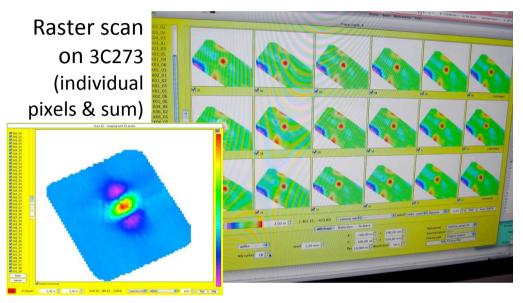

Noise Equivalent Temperature

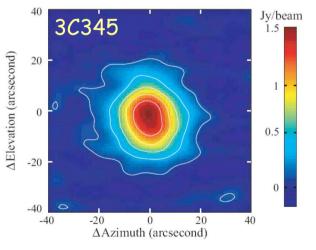

 $NET_{pix} = T / (S/N) = 81 | 17 \text{ mK/Hz}^{1/2} @ 1 \text{Hz}$ 

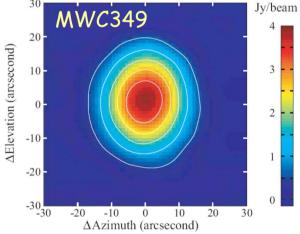

 $NET_{beam} = NET_{pix} = 38 \mid 10 \text{ mK/Hz}^{1/2} @ 1 \text{Hz}$ 

Optimal background photon noise calcul:


 $NET_{beam} < 1 \text{ mK/Hz}^{1/2}$ 



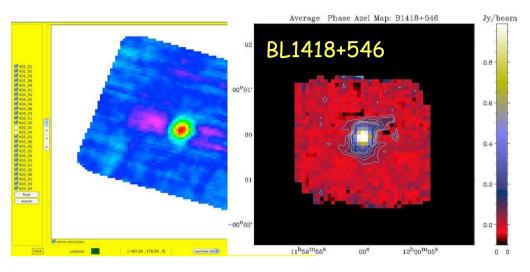




#### 1.5. Observations with A-KID (SRON)

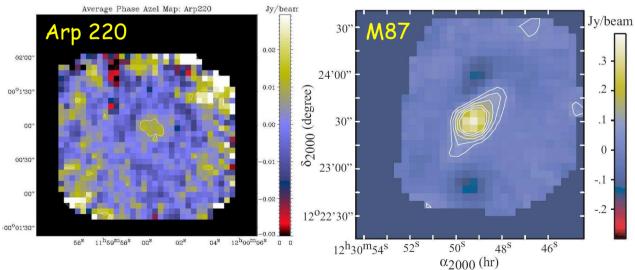












12/05/2010

SAC meeting IRAM Grenoble

#### 1.6. Observations with LEKID (Néel/IRAM)



| Source    | Scan (") | t <sub>int</sub> (s) | F <sub>mes</sub> (Jy) |
|-----------|----------|----------------------|-----------------------|
| 3C345     | 69-73    | 210 x 5              | $4.35 \pm 0.01$       |
| B1418+546 | 75-82    | 210 x 8              | 1.17 ± 0.01           |
| MWC349    | 94-96    | 210 x 3              | 1.47 ± 0.03           |
| B1800+440 | 98-99    | 210 x 2              | $0.09 \pm 0.01$       |
| 3C273     | 66-67    | 110 x 2              | 14.78 ± 0.04          |
| Arp220    | 125-166  | 110 x 32             | 0.007 ± 0.003         |



| Working pixels          | 25 LEKIDs                 |
|-------------------------|---------------------------|
| rms in 1 scan           | 37 mJy after<br>210 s     |
| NEFD <sub>beam</sub>    | 240 mJy·s <sup>1/2</sup>  |
| rms in 1 map<br>90"x90" | 2.9 mJy after<br>44x110 s |
| NET <sub>beam</sub>     | 46 mK·s <sup>1/2</sup>    |

12/05/2010

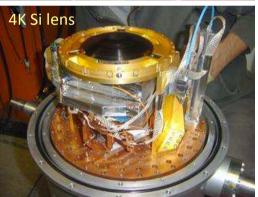
SAC meeting IRAM Grenoble

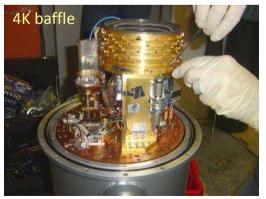
#### 1.7. Outcome of the run

- Unpacking to 1<sup>st</sup> astronomical light in only 4 days.
- ~<10% bad pixels.
- Alignment and focus quick and easy.
- Only relatively strong sources observed.
- Noise & Sensitivity dominated by detector  $\Rightarrow$  ~20× from optimal background.
- Successful run: 1st time ever that KID see astronomical sources.
- Run useful to learn interfacing the instrument with the telescope.
- Several improvements already in progress to reach expected sensitivities.

Article: Monfardini et al submitted to A&A: http://arxiv.org/abs/1004.2209

#### 3.1. Instrument


- Same cryostat as 1<sup>st</sup> and 2<sup>nd</sup> runs
- Same  $16\times8 = 128$  TES  $0.9F\lambda$  bolometers as  $2^{nd}$  run
- New SQUID MUX package
- New 4K motorized Neutral Density Filters
- New internal calibration LED
- New external shutter control
- New control software (calibration, observations, I-V, sky dip, ...)
- New data reduction software: CRUSH-2
- New GISMO documentation (control & data reduction)

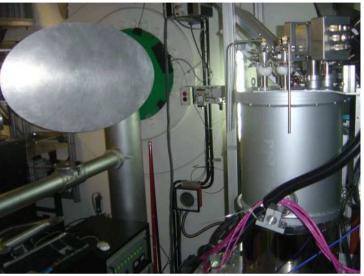




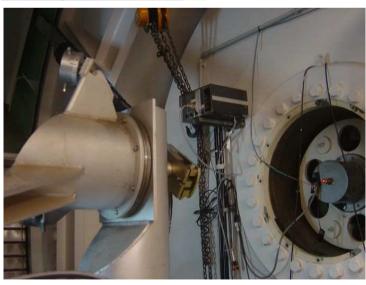


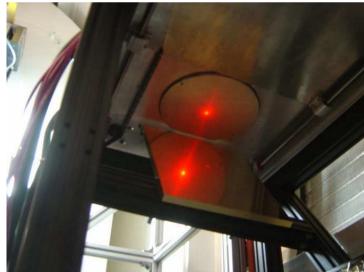





12/05/2010


SAC meeting IRAM Grenoble


#### 3.2. Installation in the 30m cabin

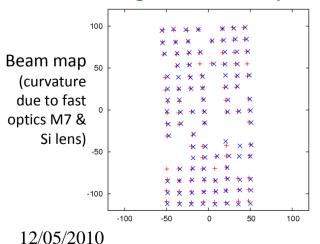


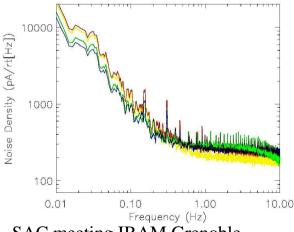






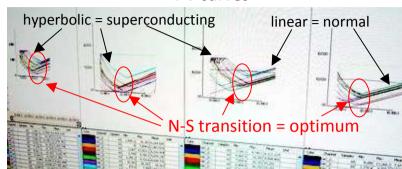






12/05/2010

SAC meeting IRAM Grenoble

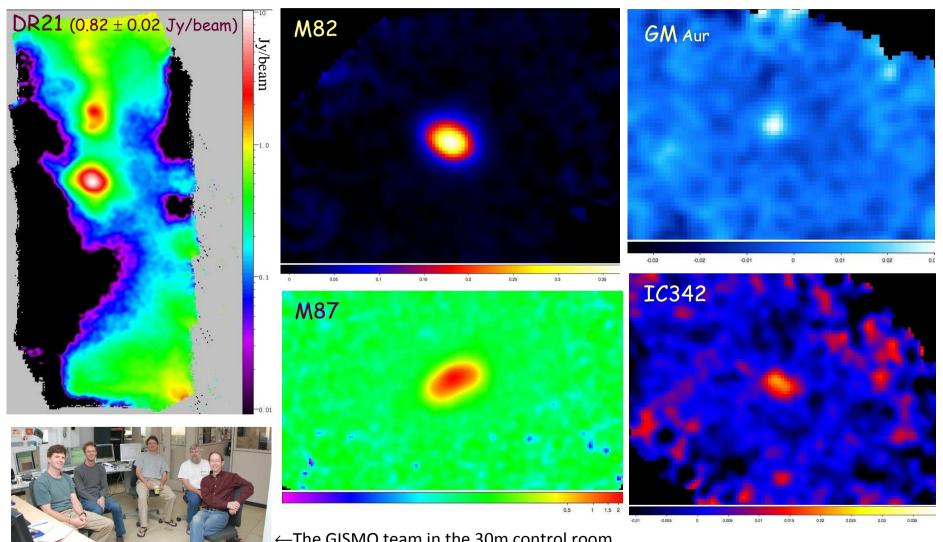
#### 3.3. Calibration & problems


- Wiggles in I-V curves ⇒ CPU overheating
- Closed shutter tests OK (bias, IV, LED, noise spectra...)
- 90% pixels working
- ullet Temperature jump after installation in cabin  $\Longrightarrow$  wait
- Saturation with open shutter: alignment? optics broken?
   ... stray light in NDF box! ⇒ use old spacer
- Abnormal noise in 3 MUX lines ⇒ Battery box
- Non uniform illumination ⇒ iterative alignment
- Observations & calibrations: pixel map, sky dip, calibration sources, pointing model...
- Snow, soft transfer tube, power failure, telescope data...
- ⇒ time loss
- Some slots of good weather, system better than ever...














#### 3.4. Observations



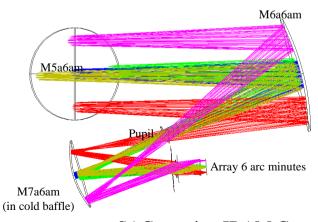
←The GISMO team in the 30m control room

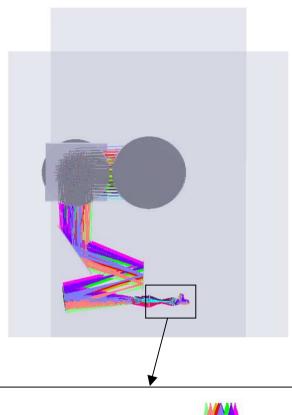
#### 3.5. Outcome of the run

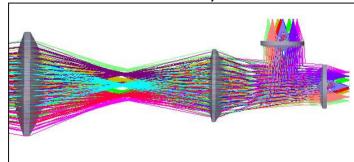
- Goal: astronomical run (proposals from the GISMO team & IRAM astronomers).
- Preparation of instrument, workshop tests, and installation fast and smooth.
- 90% pixel working.
- Instrument control easy when there's no technical problem.
- Astronomy goal could not be fulfill due to time loss caused by unexpected technical and operational problems (stray lights, alignment, weather...).
- Need improve pre-run (optical tests) and in-run (alignment) procedures.
- Once working, the system performances looked netter than ever.
- Stable gains, fast pointing.
- Some nice astronomical images, data reduction in progress.
- Once the technical issues fixed (NDF box mainly), instrument could be available for astronomers community.

## 4. Next Steps

#### 4.1. NIKA


**Sky simulator:** box with absorber @ 40K for optical test in lab  $\Rightarrow$  get one at IRAM ?


#### NIKA 2<sup>nd</sup> run:


- September / October
- New cryostat: longer baffle, 2 arrays
- $\lambda = 2 \& 1 \text{ mm}$
- Separation by dichroic or polarizer
- ~ 100 pixel for each array
- Sensitivity × 5 compared to 1st run
- New electronic: Casper Roach Boards
- New filters

#### **NIKA 2:**

- 2 bands
- 6' FOV
- > kilo-pixels
- Background limited
- Cryogen free

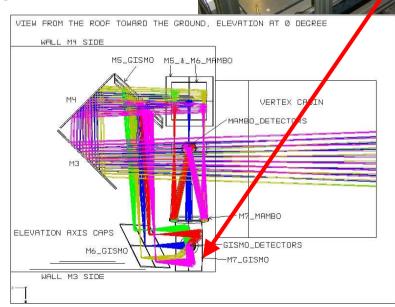






# 4. Next Steps 4.2. GISMO

#### **Final upgrades:**


- Neutral Density Filters box (black paint)
- Power supply
- Find better alignment & operation procedures ?
- Updates control & data software; documentation ?

#### **Dedicated position in receiver cabin:**

- One proposition with a MAMBO-GISMO switch
- Need 2 flat mirrors, easily movable
- Need a new anti-vibration table
- Need to move MAMBO 2 backend

#### GISMO 2:

- 2 bands (arrays ~ off-the-shelves)
- > 6' FOV
- > kilo-pixels
- Background limited



## 4. Next Steps

#### 4.3. Call for proposal

Reachable with a little modification of the 30m telescope receiver cabin optics:

| Band <b>center</b> | Maximal <b>Bandwidth</b> | 0.5Fλ <b>pixels</b> in <b>7' FOV</b> | best <b>NEFD</b> <sub>beam</sub> |
|--------------------|--------------------------|--------------------------------------|----------------------------------|
| 92 GHz ⇔ 3.25 mm   | 45 GHz                   | 1100                                 | 4 mJy⋅s <sup>1/2</sup>           |
| 146 GHz ⇔ 2.05 mm  | 45 GHz                   | 2700                                 | 5 mJy⋅s <sup>1/2</sup>           |
| 250 GHz ⇔ 1.20 mm  | 105 GHz                  | 8000                                 | 5 mJy⋅s <sup>1/2</sup>           |
| 345 GHz ⇔ 0.87 mm  | 25 GHz                   | 15000                                | 30 mJy⋅s¹/2                      |

- $\Rightarrow$  Current whished instrument: 3 bands in 3 filled arrays covering 7' FOV with ~15000 pixels (full 2 & 1.2 mm, third .87 mm), background limited (NET<sub>beam</sub>~ 0.5 mK·s<sup>1/2</sup>), large dynamic (~15-150 K<sub>RJ</sub> background), negligible stray-light, polarization option, cryogen free cryostat.
  - Preliminary budget: ~1.7 M€ for non-detector hardware (cryostat, optics, ...) +
     ~2.6 M€ for a TES system (GISMO style) OR ~1.2 M€ for a KID system (NIKA style)
  - Availability for astronomer ~2014

Possible compromise: 6' FOV, 2 & 1.2 mm bands only  $\Rightarrow$  ~7000 pixels

#### Conclusion

Néel, AIG Cardiff, SRON, GSFC, CEA, MPIfR answered our 2007 call for proposal

#### **GISMO**

- Fast conception using the NASA-GSFC TES BUG program & the NIST SQUID MUX development for SCUBA-2 + GISMO specific developments.
- ➤ 3 runs (11/2007, 10/2008, 04/2010) showing promising results and proving the technology is mostly ready for 100s pixel instrument.

#### **NIKA**

- Fast conception using a cryostat built in the DCMB frameworks & partners KID and Frequency Division Multiplexing developments + NIKA specific developments (M.Roesch talk).
- ➤ 1 run (10/2009) showing the world première astronomical images with KID, promising results though sensitivity improvement are required for a science grade instrument.

GIMSO and NIKA are continuously improving with only a limited financial involvement by IRAM. They both need to prove their capacity to scale to kilopixel arrays.

Preparation for the science grade instrument continues: cabin optics, collaboration with GISMO & NIKA teams, call for proposal (competition still opened to any group).

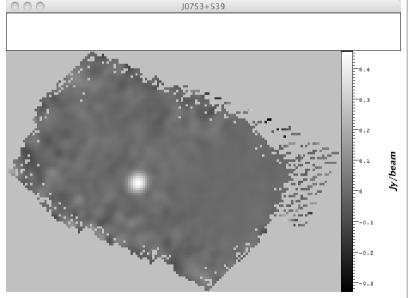
# Extra slides Reminder - Project

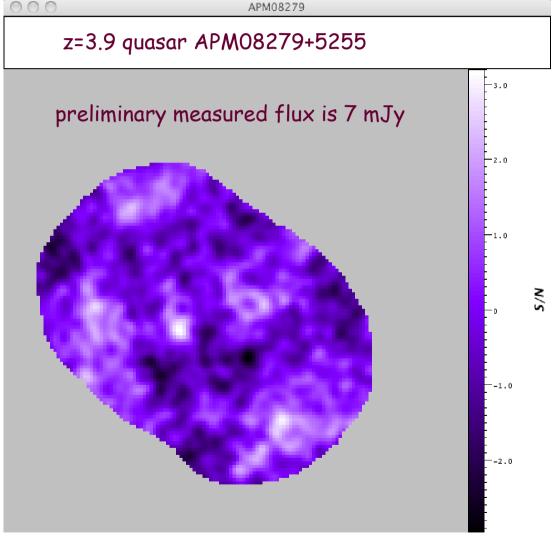
Goal Replace MAMBO 2 with a more powerful "bolometric" instrument

**Steps** Specifications, letter of interest, prototypes

Tests, technology validation, call for proposal

Final instrument, optics, delivery


#### Specification

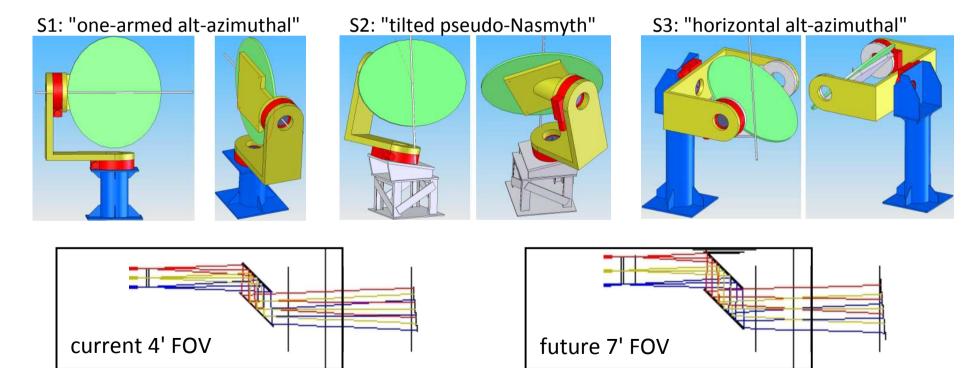

- At least 2 colors (bands / channels)
- Background limited (NET<sub>beam</sub> ~ 0.5mK·s<sup>1/2</sup> & NEFD<sub>beam</sub> ~ 5mJy·s<sup>1/2</sup> @ 30m 4 windows)
- Large dynamic range (15-150 K<sub>RJ</sub> background)
- Nyquist sampling pixels (0.5F $\lambda$ , best for mapping)
- Filled array (best against anomalous refraction)
- Field Of View ≥ 6'
- Negligible sensitivity to stray-lights
- Cost < 6M€</li>

# Extra slides GISMO 3<sup>rd</sup> run (04/2010) - Observations

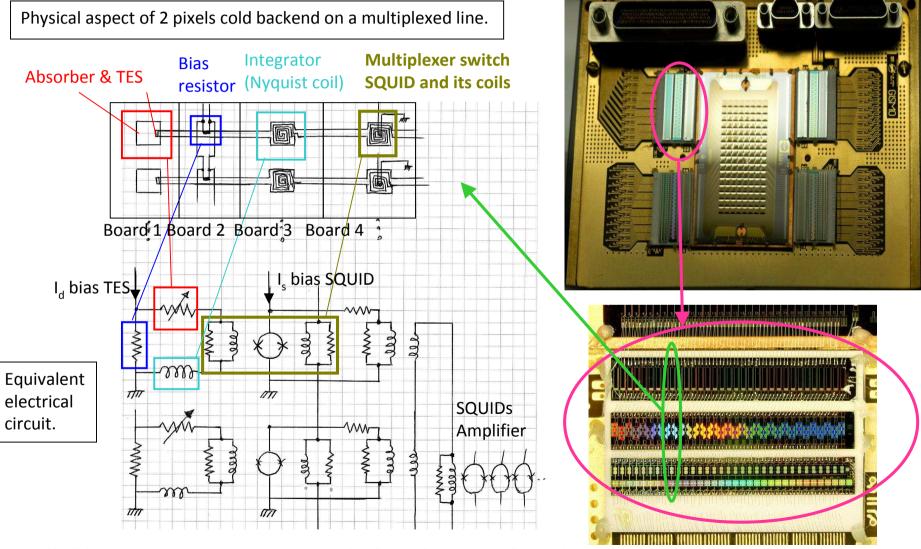
Latest observation processed (May 10), realized with mediocre weather

Nearby quasar J0753 observed between the scans that are summed up here





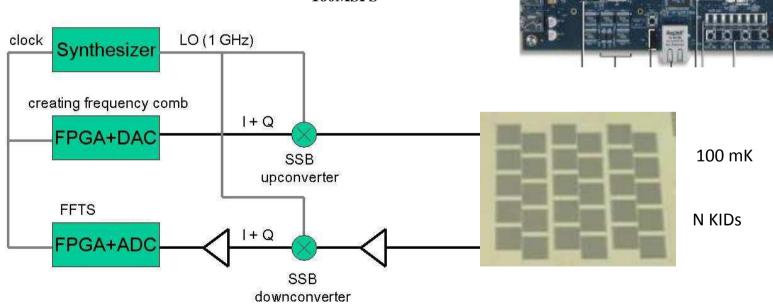

#### Extra slides


### Next Steps - Increase 30m FOV

#### Reorganization of the 30m optics refurbishment project:

- New M3 leg and motorization (2010 or 2011?).
- New M3 and motorized M4 (Nasmyth 7.4' FOV, 2012 ?)
- $\Rightarrow$  move everything in the cabin + new mirrors after M4.
- Possibly new fixed M4b (10' FOV, in many years ?).

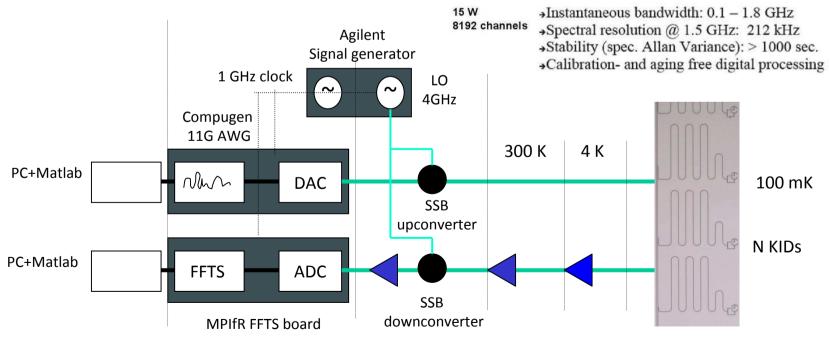



# Extra slides GISMO backend



# Extra slides NIKA backend

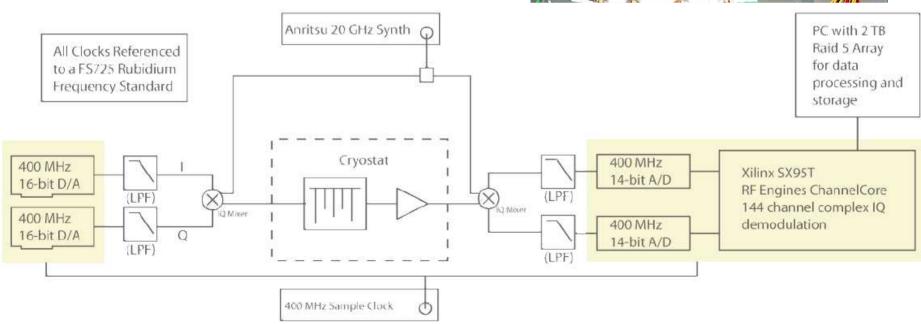
- Neel FPGA board up to 32 channels.
- A similar (but 400MHz and bigger FPGA)
   custom board is under development at LPSC
   Grenoble, should work up to ~ 128 channels.


ALTERA evaluation board (STRATIX-II): 2 ADC 12-bit 125 MSPS + 2 DAC 14-bit 160MSPS



# Extra slides NIKA backend

- **Bonn MPIfR FFTS board** + new DAC board. ~128 channels already feasible. Could go up to ~400.






# Extra slides NIKA backend

- IRAM paid a participation entry to the Mazin **Open Source project** for developing a 128 channels module, the **CASPER Roach Board**. Néel is working on the 2 boards we got, developing 2 different strategies ("I-Q lock-in" ~90 pixels, FFT in PC ~128 pixels)



