Testing of current "bolometric" prototypes: GISMO, NIKA & Next Steps Samuel Leclercq #### Content - 1. Reminders - 2. NIKA 1st run at the 30m telescope - 3. GISMO 3rd run at the 30m telescope - 4. Next Steps - 5. Conclusion #### 1.1. Bands, pixels, and sensitivities Atmosphere opacity model for Pico Veleta (275 K at telescope site, 1 & 7 mm of precipitable water vapor) \Rightarrow 90 & 150 GHz always, 250 GHz often, 350 GHz few weeks. Main characteristics of the bands available | Band
center | Band
width
max | Airy
FWHM
(band
center) | Number
of 0.5Fλ
pixels in
7' FOV | "good
sky*"
NEFD /
HPBW | |---------------------------|-----------------------------|----------------------------------|---|---| | 92 GHz
3.25 mm | 45
GHz | 22.6" | 1100 | 4
mJy·s ^{1/2} | | 146 GHz
2.05 mm | 45
GHz | 14.5" | 2700 | 5
mJy·s ^{1/2} | | 250 GHz
1.2 mm | 105
GHz | 8.8" | 8000 | 5
mJy·s ^{1/2} | | 345 GHz
0.87 mm | 25
GHz | 6.2" | 15000 | 30
mJy∙s¹/² | In the 4 bands "good sky*" NET_{beam}~ 0.5 mK·s^{1/2} 1 mm pwv and 60° elevation MAMBO 2: 117 feedhorns, 3.5' FOV, 250 GHz, ~ 40 mJy·s^{1/2}/beam (OnOff & 4mm pwv). Photon noise limit ~ 8 mJy·s^{1/2} ^{*} My definition of a "good sky" @ PV: #### 1.2. GISMO (Nasa GSFC) - Transition Edge Sensors - $v = 150 \text{ GHz} (\lambda = 2 \text{ mm}), \Delta v = 22 \text{ GHz}$ - 0.9 F λ bare-pixels (15"×15" in sky) - Unpolarized, pixel absorption = 90% - DC coupled ⇒ total power - 8x16 = 128 pixels - 1st filled array @ the 30m - SQUID amplifiers & multiplexers (4×32) - 260 mK ³He sorption cooler #### 1.3. GISMO 1st run (11/2007) #### Results - 1st astronomical source few hours after installation - Realtime display & interface with telescope OK - 50% useable pixels - map NEFD ~ 200 mJy·s^{1/2} - \Rightarrow not optimal (see problems) Article: Staguhn et al, SPIE 2008 #### **Problems** - Broken bias line (25% pixels lost) & 25% weird pixels - Baffling undersized => warm field stop needed against hot spillover - Saturation at 35 pW load (150 K sources with 40% ND filter) - Some EM pickup #### 1.4. GISMO 2nd run (10/2008) #### **Upgrades** - Detector board - Baffle - EM shield - Shutter - Lissajou (telescope) #### Results - 60% useable pixels - map NEFD \sim 45 mJy·s^{1/2} - \Rightarrow better but cloudy weather #### **Problems** - Short in 1 MUX (25% pixels lost) - Excess noise (in maps, some pixels not used) - Anti-vibration table mismatch (shocks) - Internal calibration LED misaligned #### 1.5. NIKA (CNRS Néel / IRAM / AIG Cardiff / SRON) Great multiplexing capacities 80 mK ³He-⁴He dilution fridge Telecentric optics, reflective baffle ## 2. NIKA 1st run (10/2009) 1.1. Lab tests #### 1.2. Instrument - $7 \times 6 = 42 \text{ A-KID } 0.5 \text{ F} \lambda$, MPIfR "Bonn" electronic - $6 \times 5 = 30$ LEKID $0.75F\lambda$, "Bonn" or Néel FPGA - Polarized, absorption = 30% - All cryogen fridge (He bottles) - Detector noise > photon noise Thermalized SS Coax Detector Array NbTi Coax + 10 dB Attenuator @ 100 mK (not shown) 20 dB Attenuator + DC block 4K HEMT Amplifier Detector array behind 127 to 170 Ghz bandpass filter Baffle (Ellipsoid mirror) #### 1.3. Installation in the 30m cabin #### First light #### 1.4. Calibration <u>Geometry:</u> Detector \leftrightarrow Nasmyth \leftrightarrow AzEL \leftrightarrow RaDec \Rightarrow Detectors positions recovered @ ~2" level #### **Sensitivity:** Venus | Mars angular diameter = 10.7 | 7.5 " Temperature = 232 | 205 K HPBW [Pixel*2mm_Airy] ~ 18 | 19 " Effective T = $232 \cdot (10.7/18)^2 \cdot 50\%$ $205 \cdot (7.5/19)^2 \cdot 50\% = 41 \mid 16 \text{ K}$ Pixel S/N (planet signal / noise spectra) ◀ ~= 500 | 1000 Hz^{1/2} @ 1Hz Noise Equivalent Temperature $NET_{pix} = T / (S/N) = 81 | 17 \text{ mK/Hz}^{1/2} @ 1 \text{Hz}$ $NET_{beam} = NET_{pix} = 38 \mid 10 \text{ mK/Hz}^{1/2} @ 1 \text{Hz}$ Optimal background photon noise calcul: $NET_{beam} < 1 \text{ mK/Hz}^{1/2}$ #### 1.5. Observations with A-KID (SRON) 12/05/2010 SAC meeting IRAM Grenoble #### 1.6. Observations with LEKID (Néel/IRAM) | Source | Scan (") | t _{int} (s) | F _{mes} (Jy) | |-----------|----------|----------------------|-----------------------| | 3C345 | 69-73 | 210 x 5 | 4.35 ± 0.01 | | B1418+546 | 75-82 | 210 x 8 | 1.17 ± 0.01 | | MWC349 | 94-96 | 210 x 3 | 1.47 ± 0.03 | | B1800+440 | 98-99 | 210 x 2 | 0.09 ± 0.01 | | 3C273 | 66-67 | 110 x 2 | 14.78 ± 0.04 | | Arp220 | 125-166 | 110 x 32 | 0.007 ± 0.003 | | Working pixels | 25 LEKIDs | |-------------------------|---------------------------| | rms in 1 scan | 37 mJy after
210 s | | NEFD _{beam} | 240 mJy·s ^{1/2} | | rms in 1 map
90"x90" | 2.9 mJy after
44x110 s | | NET _{beam} | 46 mK·s ^{1/2} | 12/05/2010 SAC meeting IRAM Grenoble #### 1.7. Outcome of the run - Unpacking to 1st astronomical light in only 4 days. - ~<10% bad pixels. - Alignment and focus quick and easy. - Only relatively strong sources observed. - Noise & Sensitivity dominated by detector \Rightarrow ~20× from optimal background. - Successful run: 1st time ever that KID see astronomical sources. - Run useful to learn interfacing the instrument with the telescope. - Several improvements already in progress to reach expected sensitivities. Article: Monfardini et al submitted to A&A: http://arxiv.org/abs/1004.2209 #### 3.1. Instrument - Same cryostat as 1st and 2nd runs - Same $16\times8 = 128$ TES $0.9F\lambda$ bolometers as 2^{nd} run - New SQUID MUX package - New 4K motorized Neutral Density Filters - New internal calibration LED - New external shutter control - New control software (calibration, observations, I-V, sky dip, ...) - New data reduction software: CRUSH-2 - New GISMO documentation (control & data reduction) 12/05/2010 SAC meeting IRAM Grenoble #### 3.2. Installation in the 30m cabin 12/05/2010 SAC meeting IRAM Grenoble #### 3.3. Calibration & problems - Wiggles in I-V curves ⇒ CPU overheating - Closed shutter tests OK (bias, IV, LED, noise spectra...) - 90% pixels working - ullet Temperature jump after installation in cabin \Longrightarrow wait - Saturation with open shutter: alignment? optics broken? ... stray light in NDF box! ⇒ use old spacer - Abnormal noise in 3 MUX lines ⇒ Battery box - Non uniform illumination ⇒ iterative alignment - Observations & calibrations: pixel map, sky dip, calibration sources, pointing model... - Snow, soft transfer tube, power failure, telescope data... - ⇒ time loss - Some slots of good weather, system better than ever... #### 3.4. Observations ←The GISMO team in the 30m control room #### 3.5. Outcome of the run - Goal: astronomical run (proposals from the GISMO team & IRAM astronomers). - Preparation of instrument, workshop tests, and installation fast and smooth. - 90% pixel working. - Instrument control easy when there's no technical problem. - Astronomy goal could not be fulfill due to time loss caused by unexpected technical and operational problems (stray lights, alignment, weather...). - Need improve pre-run (optical tests) and in-run (alignment) procedures. - Once working, the system performances looked netter than ever. - Stable gains, fast pointing. - Some nice astronomical images, data reduction in progress. - Once the technical issues fixed (NDF box mainly), instrument could be available for astronomers community. ## 4. Next Steps #### 4.1. NIKA **Sky simulator:** box with absorber @ 40K for optical test in lab \Rightarrow get one at IRAM ? #### NIKA 2nd run: - September / October - New cryostat: longer baffle, 2 arrays - $\lambda = 2 \& 1 \text{ mm}$ - Separation by dichroic or polarizer - ~ 100 pixel for each array - Sensitivity × 5 compared to 1st run - New electronic: Casper Roach Boards - New filters #### **NIKA 2:** - 2 bands - 6' FOV - > kilo-pixels - Background limited - Cryogen free # 4. Next Steps 4.2. GISMO #### **Final upgrades:** - Neutral Density Filters box (black paint) - Power supply - Find better alignment & operation procedures ? - Updates control & data software; documentation ? #### **Dedicated position in receiver cabin:** - One proposition with a MAMBO-GISMO switch - Need 2 flat mirrors, easily movable - Need a new anti-vibration table - Need to move MAMBO 2 backend #### GISMO 2: - 2 bands (arrays ~ off-the-shelves) - > 6' FOV - > kilo-pixels - Background limited ## 4. Next Steps #### 4.3. Call for proposal Reachable with a little modification of the 30m telescope receiver cabin optics: | Band center | Maximal Bandwidth | 0.5Fλ pixels in 7' FOV | best NEFD _{beam} | |--------------------|--------------------------|--------------------------------------|----------------------------------| | 92 GHz ⇔ 3.25 mm | 45 GHz | 1100 | 4 mJy⋅s ^{1/2} | | 146 GHz ⇔ 2.05 mm | 45 GHz | 2700 | 5 mJy⋅s ^{1/2} | | 250 GHz ⇔ 1.20 mm | 105 GHz | 8000 | 5 mJy⋅s ^{1/2} | | 345 GHz ⇔ 0.87 mm | 25 GHz | 15000 | 30 mJy⋅s¹/2 | - \Rightarrow Current whished instrument: 3 bands in 3 filled arrays covering 7' FOV with ~15000 pixels (full 2 & 1.2 mm, third .87 mm), background limited (NET_{beam}~ 0.5 mK·s^{1/2}), large dynamic (~15-150 K_{RJ} background), negligible stray-light, polarization option, cryogen free cryostat. - Preliminary budget: ~1.7 M€ for non-detector hardware (cryostat, optics, ...) + ~2.6 M€ for a TES system (GISMO style) OR ~1.2 M€ for a KID system (NIKA style) - Availability for astronomer ~2014 Possible compromise: 6' FOV, 2 & 1.2 mm bands only \Rightarrow ~7000 pixels #### Conclusion Néel, AIG Cardiff, SRON, GSFC, CEA, MPIfR answered our 2007 call for proposal #### **GISMO** - Fast conception using the NASA-GSFC TES BUG program & the NIST SQUID MUX development for SCUBA-2 + GISMO specific developments. - ➤ 3 runs (11/2007, 10/2008, 04/2010) showing promising results and proving the technology is mostly ready for 100s pixel instrument. #### **NIKA** - Fast conception using a cryostat built in the DCMB frameworks & partners KID and Frequency Division Multiplexing developments + NIKA specific developments (M.Roesch talk). - ➤ 1 run (10/2009) showing the world première astronomical images with KID, promising results though sensitivity improvement are required for a science grade instrument. GIMSO and NIKA are continuously improving with only a limited financial involvement by IRAM. They both need to prove their capacity to scale to kilopixel arrays. Preparation for the science grade instrument continues: cabin optics, collaboration with GISMO & NIKA teams, call for proposal (competition still opened to any group). # Extra slides Reminder - Project Goal Replace MAMBO 2 with a more powerful "bolometric" instrument **Steps** Specifications, letter of interest, prototypes Tests, technology validation, call for proposal Final instrument, optics, delivery #### Specification - At least 2 colors (bands / channels) - Background limited (NET_{beam} ~ 0.5mK·s^{1/2} & NEFD_{beam} ~ 5mJy·s^{1/2} @ 30m 4 windows) - Large dynamic range (15-150 K_{RJ} background) - Nyquist sampling pixels (0.5F λ , best for mapping) - Filled array (best against anomalous refraction) - Field Of View ≥ 6' - Negligible sensitivity to stray-lights - Cost < 6M€ # Extra slides GISMO 3rd run (04/2010) - Observations Latest observation processed (May 10), realized with mediocre weather Nearby quasar J0753 observed between the scans that are summed up here #### Extra slides ### Next Steps - Increase 30m FOV #### Reorganization of the 30m optics refurbishment project: - New M3 leg and motorization (2010 or 2011?). - New M3 and motorized M4 (Nasmyth 7.4' FOV, 2012 ?) - \Rightarrow move everything in the cabin + new mirrors after M4. - Possibly new fixed M4b (10' FOV, in many years ?). # Extra slides GISMO backend # Extra slides NIKA backend - Neel FPGA board up to 32 channels. - A similar (but 400MHz and bigger FPGA) custom board is under development at LPSC Grenoble, should work up to ~ 128 channels. ALTERA evaluation board (STRATIX-II): 2 ADC 12-bit 125 MSPS + 2 DAC 14-bit 160MSPS # Extra slides NIKA backend - **Bonn MPIfR FFTS board** + new DAC board. ~128 channels already feasible. Could go up to ~400. # Extra slides NIKA backend - IRAM paid a participation entry to the Mazin **Open Source project** for developing a 128 channels module, the **CASPER Roach Board**. Néel is working on the 2 boards we got, developing 2 different strategies ("I-Q lock-in" ~90 pixels, FFT in PC ~128 pixels)