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Abstract. 

IRAM wishes to build a new wide field of view bolometer array that would be capable of utilizing 
the full capacity of the 30m telescope. This goal would represent a significant improvement compared 
to the current instrument. This article presents the specifications for a fully sampled array of 
bolometers, in the 4 wavelengths bands available, filling the current and future field of view of the 
30m, and reaching the ideal performance of photon noise limitation. 

 
 

Wavelengths bands. 

 The choice of the instrument wavelengths bands is motivated by antenna and 
atmospheric constraints. The atmospheric windows available a large part of the year 
at the 30m telescope are 3 mm (100 GHz), 2mm (150 GHz) and 1mm (250 GHz). 
Few weeks per year, very good weather conditions make the 850 µm (350 GHz) band 
very attractive. Astronomical considerations may be taken into account in the choice 
of instrumental bands. Typical astronomical subjects in millimeter wavelengths 
continuum emissions are high redshift surveys, star forming regions, molecular and 
dust clouds, and cold bodies. The 1 and 2 mm bands are the natural choices for most 
of the observations with the 30m. Their simultaneous acquisition would be excellent 
for subjects like the Sunyaev-Zeldovich effect in ionized gas regions. The 850 µm 
band is particularly interesting for the observation of dusty regions and redshifted 
objects since they both emit more in this band than in the longer wavelengths, 
compensating somehow for the more critical weather conditions and mediocre 
aperture efficiency. Though the 3 mm band looks less attractive than the others, I 
included specifications for this band for information. 

 
Fig. 1. Opacity model at Pico Veleta from ATM model, for winter (260K) and summer (300K) 

with good weather (1mm of water vapor) and bad weather (7mm). The 4 bands studied are 
the black rectangles: 94±18 GHz, 146±20 GHz, 240±45 GHz, 345±12 GHz. 



 As will be seen at the end of the NEP section, the signal to noise ratio increases as the 
square root of filters bandwidth, so at first order the bands should be as wide as 
possible. The best match with atmospheric constraints modeled from ATM model 
[1],[2], is shown in figure 1. Some legitimate reservations can be expressed about the 
maximization of the bandwidths. First, the bands extremes are very close to the 
atmospheric windows borders, so the filters must absolutely cut any power outside the 
bands; in the document we consider perfect rectangle functions for the filters (which 
seems reasonable according to recent filters profile [3]). Second, the little transition 
region between two bands may be constraining for a dichroic separating of the optical 
paths. Third, the very wide bandwidth of the 240 GHz windows may be too large for 
some sources and for power comparison with the 146 GHz band, it may also include 
too many astrophysical lines leading to sources confusion. Nevertheless, spectroscopy 
on these large bands could reverse these reservations.  

 
Field of view and beam pattern. 

The current filed of view (FOV) of the 30m is 4.4 arc minutes, limited by the 
Nasmyth mirror. With a new cabin optics design, an improvement between 10 and 12 
arc minutes is studied [4] (a new secondary mirror and instrument position could 
increase the fov up to 20 arcmin [5]). Table 1 gives for each band the angular size of 
the full width half maximum (FWHM) diffraction pattern and the number of pixels 
needed to fully sample each FOV using 2 pixels per diffraction pattern diameter.  
 

Table 1. Bolometer array geometrical characteristics, using pixels size of HWHM Airy disk. 
nd is the number of pixels in the focal plane diameter (FOV) and Nd is the number of pixels 
covering the plane. The extra nd in Nd formula insures the tilling fully covers the image.  

Number of pixels in FOV 
diameter: nd = FOV/(θa/2) 

Number of pixels in FOV disk: 
Nd ≈ (π nd

2/4) + nd Band 
FWHM 

Airy 
disk (θa) 4.4’ FOV 10’ FOV 12’ FOV 4.4’ FOV 10’ FOV 12’ FOV 

94 GHz 
3.20 mm 

22.6’’ 23 53 64 450 2300 3300 

146 GHz 
2.05 mm  

14.5’’ 36 83 99 1100 5500 7900 

240 GHz 
1.25 mm  

8.8’’ 60 136 163 2900 15000 21000 

345 GHz 
0.87 mm 

6.2’’ 86 195 234 5900 31000 44000 

 
A discussion of the relative merits of filled arrays, with instantaneous Nyquist 

sampling, and sparsely sampled arrays, with “fully efficient” horned pixels, lingers on 
in the bolometer community [6]. “Pro horns” argue that (1) the big number of pixels 
in a filled array leads to non-trivial increase in complexity, (2) the lower thermal 
background per pixel requires lower NEPs reach equivalent sensitivity at same 
operating temperatures, (3) the filled array has no intrinsic selectivity with regard to 
the acceptance angle and the beam definition has to be provided externally by a partly 
cold optical chain, involving bigger cryostats and IR filter problems [7]. These 
problems are real but technically surmountable, whereas the extra time and mapping 
method complexity can’t be avoided with horned arrays. So the horns versus filled 
arrays discussion leads to ponder the instrument price versus scanning time ratio. The 
subject of this document is not this discussion but the definition of the ideal 
instrument for the 30m, allowing the fastest, widest and simplest scanning scheme 



with the lowest noise possible, which can only be achieved with filled arrays, 
assuming all their constraints can be overcome. Critical points for a fully sampled 
array are the pixel efficiency, which is proven now [8], and angular selectivity 
(through Lyot stops and filters), which still need to be proved at millimeter 
wavelength (for example the fight against stray lights was a major battle in the 
conception of SCUBA 2 [9],[10]). 

 
The diffraction pattern considered in table 1 is the Airy diffraction pattern obtained 

with an aperture diameter D = 30m, hence a FWHM θa = 1.03λ/D. In practice, the 
main parabola steepness, the secondary mirror closing, the surface deformation 
effects, and the effects of stops and tapers used for side lobes minimization, lead to 
wider and lower blobs. We kept the Airy pattern in the pixels size calculation for its 
simplicity and because over-sampling the center of the band is better for the high 
frequency part. Nevertheless, for correct photometric evaluations, notably sensitivity 
to point sources, one has to use a more realistic beam pattern. Based on antenna 
tolerance theory and in situ measurements it is possible to derive such a pattern; table 
2 gives these empirical parameters for the 30m [11]. 

 
Table 2. Parameters for realistic expression of the 30m beam pattern. 

Name Symbol Value 
Aperture efficiency at long wavelengths ε0 0.63 
Steepness reduction factor R 0.8 
Large-scale deformation correlation length d1 3 m 
Panel frame misalignment correlation length d2 1.85 m 
Panel deformations correlation length d3 0.45 m 
Deformations rms-values (same for the 3 error beams)  σh 0.055 mm 
Taper (Lyot stops) width coefficient kt 1.1 

 
Airy type beam pattern (I) and Gaussian tapered approximation (G) without error 

beams are: 
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where r and ϕ are polar coordinates on the focal plane: r = π⋅sin(θ)⋅D/λ, θ is the angle 
between incident ray and optical axis, D is the telescope diameter, λ is the 
wavelength, and J1 is the 1st order Bessel function. 

The telescope realistic beam pattern (F) including gaussian error beams is 
characterized by the wavefront deformations (σϕ), the error beams relative amplitude 

(qe), and aperture efficiency (εa): 
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where ν is the photons frequency and bp is the beam pattern without error beams (I or 
G). As illustrated in Figure 2, the shortest the wavelength is the strongest the aperture 
efficiency effect is. For instance at 1mm, 75% of the peak height is diluted into error 
beams ! 



 
Figure 2: effect of the aperture efficiency as a function of frequency (n) or wavelength (l). 

 
The relative power (or normalized luminosity) (L) contained in a disk is the integral 

of the diffraction pattern. For a circular pupil, the integration on the focal plane polar 
coordinate can be expressed analytically as a function of the number of pixels in the 
disk radius (nr). The normalized luminosity for the Airy type pattern (La), Gaussian 

pattern (Lg), sum for the 3 error beams (Le) and generalized beam (Ln) are: 
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(3) 
where ν is the frequency, rpx is the size of a pixel in the focal plane, J0 and J1 are 

Bessel functions and sg is the “width” parameter of the main beam (2  for the Airy 
pattern and σG for the Gaussian pattern). LN is the value of the integration of the beam 
pattern F at infinite radius, corresponding to integration over the 2π steradian half 
plane in front of the aperture. The conservation of energy impose that the relative 
power is 1 at infinity, hence the 1/LN factor in the general expression Ln(r,ϕ,ν,Lbp). 
Lbp is either Lg or La depending on the choice to use a taper or not. Figure 3 shows the 
behavior of the relative power without and with error beams. 

For photometric calculations, extended sources are viewed as emitting from 2π 
steradian, hence on each point of the focal plane all the beam patterns components 
from each point of a source are summed and the relative power is therefore always 
equal to one. But for a single point source there is only one diffraction pattern, and as 
Figure 3 illustrates, the influence of aperture efficiency and error beams is huge at 
small radius of integration, hence the importance of utilizing the realistic beam pattern 
for correct sensitivity predictions. 
The normalized beam pattern is the derivative of the relative power: 
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Figure 3. Relative power as a function of the number of pixels in a disk radius, for the Airy 

type pattern (La) (black dots), the tapered Gaussian pattern (Lg) (black solid) and the realistic 
beam pattern including error beams (Ln) with either the Airy pattern (dots) or the tapered 
Gaussian (solid) as the main beam. Red = 3.20 mm band, Blue = 2.05 mm band, 
Magenta = 1.25 mm band, Brown = 0.87 mm band. 

 
The beam pattern of equation (4) do not take into account the spill-over effect, 

enabling sources behind the antenna to radiate on the focal plane, and respectively 
leading to losses of energy in side lobes behind the antenna from sources in front of it. 
Since the implementation of the spill-over effect in the antenna tolerance theory 
complicates the equations, a convenient numerical correction uses the forward 
efficiency Feff. This empirical parameter gives the fraction of absorbed light from the 
half space in front of the telescope, deduced from sky dips measurements [12]. 
Photometric calculations have to use this corrected model since it adds the ground as 
an additional background source and it reduces the power from forward sources. 

 
Remark: for an existing instrument it is generally not necessary to use the antenna 

tolerance theory. The concepts of antenna and brightness temperatures allow to 
calculate the power received by the system without knowing the details of the Fourier 
coverage of the aperture, and the consequences of the grading are mainly taken into 
account through 3 global factors: the aperture efficiency (εa), the beam efficiency 
(Beff) and the forward efficiency (Feff). As seen previously εa is the relative loss of 
intensity at the center of the beam, which is equivalent to a ratio of effective 
collecting area versus geometric area. The definition Beff from [12] is 
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where Ta’ is the antenna temperature outside the atmosphere, Tmb is the main-beam 
brightness temperature, Ωb is the solid angle of a rectangle function with the same 
height as the Gaussian beam pattern and containing the same energy. The 
generalization of Beff to any beam pattern can be done with the generalization of Ωb. 
Hence εa, Beff and Feff can respectively be interpreted as the efficiencies at center of 
the beam, in the main beam (Ωb) and in the full beam (antenna FOV). Unfortunately 
Beff presented in [12], calculated in [11], deduced from equation (4), and the empirical 
values in [11] and [12] disagree, with ∆Beff ≤ 0.3, which is bad for the low value in 
the 0.87 mm band. Despite these inconsistencies it is better to use the “realistic” beam 
pattern model for point sources photometric calculations than disregarding the effect 
of error beams on the real beam. 



Radiation power budget on a pixel. 

The background sources always contributing to the power budget on the pixel are 
the atmosphere, the ground, the telescope and the optical chain. The power absorbed 
from these sources has to be compared to the power from typical astronomical sources 
such as the Cosmic Microwave Background (CMB), a 1K Rayleigh-Jeans extended 
source, a 1mJy punctual source, a 1000 Jy medium size source and Jupiter.  

 
The photons are attenuated between the sources and the detector by the emissivity of 

the sources, the elevation angle (el), the transmissions of objects between source and 
detector, the spillover effect, and the detector efficiency. The opacity (τ), transmission 
(t) and emissivity (e) are related by t = exp(−τ/sin(el)) and e = 1-t.  
The calculations presented here used an elevation of 50° and a 4th order polynomial 
approximation cut by rectangle functions to simulate the atmosphere opacity. The 
errors are about 10% at the rectangles edges, and less than 1% elsewhere. 
To fight stray lights in filled arrays and cut all frequencies outside the bands it is 
necessary to use a Lyot stop, cold baffles and several layers of filters at different 
temperature stages. Thermal blockers cut infra-red light (5 µm, 50 µm, etc.), edge 
filters delimitate more strictly the useful domain, and the band-pass filter may be 
preceded by dichroics and neutral density filters. The power budget presented below 
was calculated with a realistic configuration of 8 filters: 1 at 300 K, 2 at 77 K, 4 at 
4 K and the band-pass filter at 300 mK. Each filter transmission was modeled by a 
simple rectangle function of height tf = 0.95 [3], leading to similar errors than the 
atmosphere approximation.  
Figure 4 shows the atmosphere and total filters transmissions used in the calculations. 
 

 
Figure 4. Transmissions (t) as a function of frequency (n). Atmospheric transmission (ta) at 

260K, 1 mm of water vapor in green, and 7 mm of water vapor in cyan. Filters transmission 
(tf): 3.20 mm (94 GHz) band in brown, 2.05 mm (146 GHz) band in red, 1.25 mm (240 GHz) 
band in magenta, and 0.87 mm (345 GHz) in blue. 
 
The ohmic losses are 1% per mirror [13] and are responsible for their emissivity. The 
term “spill-over” calculated below includes all the losses not contributing to the 
background and not due to the detectors efficiency. Since the forward efficiency 
includes all losses from telescope entrance to the mirror M6 (convention used in 
measurements at the 30m [13]), the optical system attenuations factors are: 

Pixel efficiency: η = 0.90. Cold filters transmission: tf = tfbp⋅tf77⋅tf4 = 0.70. 
Mirrors reflection: tm = (1-0.01)6. Telescope + optics: tt = tm⋅tf300 = 0.89.         

Spill-over: sp(ν) = Feff(ν)/tm ⇒ sp(94/146/240/350GHz)=0.98/0.97/0.90/0.80 
 



The attenuation factor formula for a given source is: 

∏ ν⋅ν⋅ν⋅=ν
i

is )(t)(e)sp(η)aet(                                          (5) 

where ν is the frequency and ti is the transmission of objects between the source and 
the detector. For the ground, sp(ν) has to be replaced with (1-sp(ν)) and the typical 
emissivity is eg = 0.3 [14]. The aperture efficiency at long wavelength calculated with 
these attenuation factors is ε0 = η sp(0) tt tf(νc) = 0.55. 

 
The background sources (atmosphere, telescope and optics) and the CMB are 

continuum sources, which photon emission is described by the black body model. The 
Planck formula gives their brightness (B): 
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where h is the Planck constant, c is the speed of light, k is the Boltzmann constant, ν 
is the photons frequency, po is the polarization factor (po=1 for unpolarized light and 
po=2 with a polarizer) and RJ is the Rayleigh-Jeans approximation. The numbers in 
table 3, listing the powers deposited by background and reference sources, were 
calculated for unpolarized beam. Though polarized beams should be considered as an 
option of valuable astrophysical interest [15].  
The multiplication of the brightness with attenuation factors, and integration on the 
pixel field of view and pupil (30m main mirror), gives the spectral power: 

]Hz/W[),T(B)(aetU),T(P ν⋅ν⋅=νν                                    (7) 

where U=SΩ is the throughput (etendue) of the system ; S=707m2 being the surface 
of the pupil and Ω=π(θa/4)2 the solid angle with which a pixel sees the pupil. 

The total power on a pixel is the integration on the frequency domain of the spectral 
power; between the filters boundaries νmin to νMax for all the objects before the filters, 
over the whole frequency domain for the cold part after them: 

4
coldS

2
cold TpsP]W[d),T(P)T(P

Max

min

σ=νν= ∫
ν

ν ν                         (8) 

where σS is the Stefan constant and ps is the pixel size, which has to be larger than the 
wavelength to avoid an additional diffraction term, but as small as possible to 
minimize microfabrication costs; ps = 1.1 λ was chosen as a realistic value. 
For a point source the beam pattern has to be considered. If the source flux is F 
[W/m2/Hz], the power absorbed by a pixel is: 
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The two extreme configurations are: nr = 0.5 when the center of the diffraction blob is 
at the center of the pixel, and nr = 1 when it is at the corner. 
For intermediate angular sizes sources, the beam is the convolution of the source 
shape with the diffraction pattern, but for an angular diameter θs>>θa, a cylinder 
function can be used. For a source flux Fs, the power on a disk of nr pixel in radius is: 
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This expression was used in table 3 for the 50” diameter sources, covering disks of 
respectively 16, 38, 101, and 208 pixels for the 3.20, 2.05, 1.25, and 0.87 mm bands. 



 Table 3. Power budget on a pixel size of HWHM Airy disk, from background and reference 
sources. The second column gives the physical or black body temperatures of the sources. 
The power received by a pixel for each source in each band is given for good (bad) weather 
conditions. The Rayleigh-Jeans temperature below the power when relevant. 

P [pW] for 1 (7) mm of water vapor (wv) 
TRJ [K] 

Source T [K] 

λ = 3.20 mm λ = 2.05 mm λ = 1.25 mm λ = 0.87 mm 
Atmosphere 
 

260 1.2 (2.6) 
13 (28) KRJ 

1.8 (6.5) 
18 (65) KRJ 

6.8 (27.6) 
30 (127) KRJ 

3.8 (11.1) 
77 (227) KRJ 

Ground 260 0.2 0.3 1.8 0.9 
Telescope + 
optics 

280 3.0 
29 KRJ 

3.2 
29 KRJ 

6.7 
29 KRJ 

1.6 
29 KRJ 

77 K stage(1)  77 0.7 0.7 1.6 0.4 
4 K stage(1) 4 0.05 0.03 0.04 ≈ 0 
0.3 K stage(1) 0.3 0.01 ≈ 0 ≈ 0 ≈ 0 
CMB (2) 
 

2.725 0.090 (0.084) 
1.07 KRJ 

0.052 (0.042) 
0.58 KRJ 

0.031 (0.018) 
0.17 KRJ 

 0.001 (≈ 0) 
0.04 KRJ 

Background 
total (Pbkg) 

 5.0 (6.5) 6.0 (10.8) 16.9 (37.7) 6.7 (13.9) 

1 KRJ 
extended 

n/a 0.085 (0.080) 0.092 (0.073) 0.181 (0.099) 0.034 (0.005) 

1 mJy point 
center (3) 

n/a 16 (15) ×10-6 14 (11) ×10-6 17 (10) ×10-6 1 (0) ×10-6 

1 mJy point 
corner (3) 

n/a 13 (12) ××××10-6 11 (9) ××××10-6 14 (8) ××××10-6 1 (0) ××××10-6 

1000 Jy, 
50” (4) 

n/a 6.79 (6.39) 
80 KRJ ; 5 pixels 

3.01 (2.41) 
33 KRJ ; 7 pixels 

2.22 (1.25) 
12 KRJ ; 12 pixels 

0.20 (0.03) 
6 KRJ ; 17 pixels 

Jupiter (5), 
50” (4) 

150 12.6 (11.8) 
148 KRJ ; 5 pixels 

13.4 (10.7) 
147 KRJ ; 7 pixels 

26.1 (14.2) 
144 KRJ ; 12 pixels 

4.8 (0.7) 
142 KRJ ; 17 pixels 

Max power 
PM=Pbkg+PJup 

 17.7 (18.3) 19.4 (21.5) 42.9 (52.0) 11.5 (14.6) 

Dynamic 1mm wv: 
PM(1)/P1mJy(1) 

1.4 ×106 1.7 ×106 3.2 ×106 10.8 ×106 

Dynamic 7mm wv:  
PM(7)/P1mJy(7) 

1.5 ×106 2.3 ×106 6.6 ×106 94.1 ×106 

Dynamic bad on-off 
(PM(7)-Pbkg(1))/P1mJy(7) 

1.1 ×106 1.7 ×106 4.5 ×106 51.2 ×106 

(1) The emissivities of the cryostat temperature stages are calculated with the filters transmissions. 
(2) The CMB is both an object of study and a background source. 
(3) The maximum illumination from a point source stands between the center and the corner of a pixel. 
(4) Angular diameter given in arc seconds, diameter on the array given in pixels after TRJ. 
(5) Jupiter flux depends on the band: 4500 Jy at 2.05 mm; 12000 Jy at 1.25 mm. 

 
The background is always dominated by the optical chain during good weather and 

by the atmosphere during bad weather, except the 1.25 mm band always dominated 
by the atmosphere. The ratio of total maximum power versus smallest fluctuations to 
measure implies a bolometer linear response in a large range. On-off mode may allow 
a gain of an order of magnitude for homogeneous sky, but not that much in poor 
conditions (last line of the table). With variable pixels bias compensating the incident 
power it is possible to gain few more orders of magnitude on the dynamic. 



Using BRJ approximations, attenuation factors constant at the center of the band, and 
a pixel throughput U = (πλ)2/43 obtained with θa ≈ λ/D, one can write a practical 
formula for quick estimations of the absorbed power:  

νkT2)ν(aet
4
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For the atmosphere and telescope at 1mm water vapor, the calculation gives: 
Band [mm (GHz)] 3.20 (94) 2.25 (146) 1.25 (240) 0.87 (350) 
P(Tatm) [pW] 1.1 1.7 6.1 3.7 
P(Ttel) [pW] 2.8 3.1 6.4 1.5 
The error is reasonable with roughly 10% per component. 
 

Noise Equivalent Power. 

The fundamental limit of photon noise is expressed in terms of Noise Equivalent 
Power (NEP) (explanations on NEP definition and photon noise in [16]). The photon 
NEP has two components: a classical Poissonian shot noise and a bosons bunching 
noise [17]. The later is inversely proportional to the number of states (or modes) 
available at the detector surface Nmodes = 1/(∆s⋅∆t), where ∆s and ∆t are the spatial and 
time coherence factors. Popular approximations are 1/∆t = 1/(tm⋅∆ν) (tm is the 
measurement time) and 1/∆s = U/λ2, valid only when tm >> ∆ν and U >> λ2 [18]. for 
most cases the temporal condition is true, but the spatial condition is true only with 
incoherent beams, implying a detector much larger than a diffraction blob. The correct 
formulation of the spatial coherence factor for a point source and a square pixel is: 
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where I(x,y) is the diffraction pattern in Cartesian coordinates. This formula verifies 
∆s(r) = λ2/U for totally incoherent beam and ∆s(r) = 1 for totally coherent beam. Using 
the Airy pattern instead of the real beam (Fn ) induces negligible errors. 
There is no analytical formulation for ∆s and the numerical integration may be time 
consuming, so in practice an approximated formula is helpful. Thanks to fits on the 
real curve, I defined an approximation ∆a verifying |∆a-∆s| < 0.01 everywhere. 
Expressed as a function of the number of FHWM blobs per pixel (nbp) its formula is: 
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Figure 5. Spatial coherence factor of a point source illuminating a square pixel as a function 

of the number of FWHM Airy pattern in the pixel side (nbp = 0.5 for 2 pixels in a FWHM). ∆a is 
the fit to the real coherence factor, ∆i=λ2/D is the incoherent beam approximation. 



Considering that the system bandwidth verifies the Nyquist criteria ∆f=1/2tm, the 
expression of the photon NEP is: 
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(14) 
NEPp is the classical Poissonian component and NEPb is the bosonic component. 
nbp(ν) = ν/(np⋅νc), where np = 2 is the number of pixels per FWHM diffraction pattern 
and νc is the center of the band. γ(ν) is the attenuation factor for the system power 
response: when γ(ν) = 1 the formula gives the electrical NEP (at the pixel output), 
when γ(ν) ≠ 1 the formula gives the optical NEP (at the system input) [16]. For the 
bolometers specification it is interesting to calculate both the electrical NEP to impose 
a constraint on the bolometer intrinsic noise, and the optical NEP above the 
atmosphere, called Background Radiation Equivalent NEP (BNEP) [19], for quick 
estimations of the integration time to detect a given source. For the BNEP one has to 
use γ(ν) = η⋅sp(ν)⋅ta(ν,v)⋅tt⋅tf(ν) (see equation 5). Table 4 gives the contribution of the 
background sources to NEP and BNEP. 
 

Table 4. Photon noise electrical NEP and optical BNEP for the ideal pixel at the 30m 
telescope. For each source the top number is the Poissonian NEP and the bottom number is 
the bosonic NEP. The numbers are given for a good (bad) atmosphere and non-polarized 
beam. All the values are above 0, but some are lower than the precision shown in the table. 

NEPp and NEPb [10-17W/ Hz ] at 1 (7) mm of water vapor 
NEP  BNEP 

Source 
 

band 3.20mm 2.05mm 1.25mm 0.87mm 3.20mm 2.05mm 1.25mm 0.87mm 

Atmosphere  1.3 (1.9) 
0.6 (1.4) 

1.9 (3.6) 
0.8 (3.0) 

4.7 (9.5) 
2.1 (8.7) 

4.2 (7.1) 
2.2 (6.4) 

2 (4) 
1 (3) 

4 (9) 
2 (8) 

11 (44) 
5 (42) 

13(170) 
7 (154) 

Ground 0.5 
0.1 

0.7 
0.1 

2.4 
0.6 

2.0 
0.5 

1 (1) 
0 (0) 

1 (2) 
0 (0) 

6 (12) 
1 (3) 

7 (49) 
2 (13) 

Telescope + 
optics 

1.9 
1.4 

2.5 
1.5 

4.7 
2.0 

2.7 
0.9 

4 (4) 
3 (3) 

5 (6) 
3 (4) 

11 (21) 
5 (9) 

9 (64) 
3 (22) 

77 K stage 0.9 
0.3 

1.2 
0.3 

2.3 
0.5 

1.4 
0.2 

2 (2) 
1 (1) 

2 (3) 
1 (1) 

5 (10) 
1 (2) 

4 (33) 
1 (6) 

4 K stage 0.2 
0.0 

0.3 
0.0 

0.3 
0.0 

0.1 
0.0 

n/a n/a n/a n/a 

CMB 0.3 (0.3) 
0.0 (0.0) 

0.3 (0.3) 
0.0 (0.0) 

0.3 (0.2) 
0.0 (0.0) 

0.1 (0.0) 
0.0 (0.0) 

1 (1) 
0 (0) 

1 (1) 
0 (0) 

1 (1) 
0 (0) 

0 (1) 
0 (0) 

Photon Total 2.6 (2.9) 
1.6 (2.0) 

3.5 (4.6) 
1.7 (3.4) 

7.5 (11) 
3.0 (9) 

5.5 (8.0) 
2.5 (6.5) 

5 (6) 
3 (4) 

7 (12) 
3 (9) 

17 (52) 
7 (43) 

18(190) 
9 (157) 

Pixel goal = 
Total(1mm)/3 

1.0 1.3 2.7 2.0 1.9 2.6 6.2 6.5 

TOTAL 3.2 (3.7) 4.1 (5.9) 8.5 (15) 6.4 (11) 6 (8) 8 (15) 20 (67) 21(247) 

 
The constraint on the pixel noise includes the complete reading chain (pixel intrinsic 
noise, multiplexing, amplification and digitization). The numbers calculated are 
ambitious but reachable with the techniques currently emerging.  
 

With the assumption of narrow bandwidth filters and either negligible photon 
bunching (NEPb=0) or totally incoherent beam (∆s⋅Pν≈(λ2/U)⋅(U aet B) ≈ 2k⋅aet⋅T), 
one can write a practical formula for quick estimations of the photon NEP: 

)T(PTk2)(aetNEP)T(Ph2NEP 2
bc

2
p ⋅⋅ν=ν=                      (15) 



Considering the atmosphere and telescope as the main photon noise sources and using 
the same approximations as equation 11, the NEP estimation at 1mm water vapor is: 
Band [mm (GHz)] 3.20 (94) 2.25 (146) 1.25 (240) 0.87 (350) 
NEPp(Tatm) [10-17W/ Hz ] 

NEPb(Tatm) [10-17W/ Hz ] 
1.6 
2.0 

2.4 
2.9 

6.1 
7.1 

6.0 
8.9 

NEPp(Ttel) [10-17W/ Hz ] 
NEPb(Ttel) [10-17W/ Hz ] 

2.4 
4.7 

3.1 
5.0 

5.9 
7.2 

3.7 
3.5 

The error is about 25% for NEPp and a bit more than 200% for NEPb. This can be 
considered as correct to estimate the order of magnitude of the noise. The over-
estimation of NEPb is mainly due to the use of ∆i=λ2/U=6.5 instead of ∆a=0.8. 
 

The approximation formula for both the total power and the equivalent noise don’t 
create big errors, so the most delicate work in these specifications are not the 
precision of the calculations, but the good understanding and numbering of the 
background sources and attenuation factors. 

From P and NEP formula one gets P ~ ∆ν and that NEP2 ~ ν ∆ν, therefore the 

signal to noise depend on the filters bandwidth as S/N ~ ν∆ . Thus the broadest 
bandwidths are the more attractive (astrophysical lines such as the 240 GHz CO lines, 
potentially annoying for some observations, are 2nd order considerations [20]). 

The numbers in tables 3 and 4 are given for unpolarized beams. With 2 polarizations 

a factor 1/2 appears in the expression of the absorbed power, and a factor 1/2  
appears in the expression of the NEP, leading to a more ambitious instrumental noise. 

 
NET, NEFD and integration time. 

The absorbed power depends on the coupling between telescope and detector. To 
describe the detector intrinsic performance it is helpful to use the flux density, which 
is independent on the telescope surface. The usual flux unit in radio astronomy is the 
Jansky: 1Jy = 10-26 W/m2/Hz. The Noise Equivalent Flux Density (NEFD) is defined 
as the level of flux density required to obtain a unity signal to noise ratio in one 
second of integration with the detector. The general expression for the NEFD of a 
detector with a spectral width ∆ν and a collecting surface S is: 
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x

m                         (16) 

where οm is the observing mode factor and γx an attenuation factor specifying the 
location at which the NEFD is calculated [16]. The notation NEP(γx) means that γxγ 
must be use in equation (14). The NEFD is mainly calculated outside the atmosphere, 
so using NEP(γx) = BNEP simplifies the calculation, but this approximation is valid 
only if γx depends little on ν in ∆ν. For a continuous observing mode οm=1. For 

On−Off observing mode the NEFD is increased by 2  because of the quadratic sum 
of the noise from 2 images, and if only half of the time is spent on the source it is 

increased by another factor 2 , so that οm = 2 as in [19]. 
The flux of a source is often expressed in terms of Rayleigh-Jeans temperature. In 

that case it is convenient to express the noise in terms of Noise Equivalent 
Temperature (NET): 

]W)[K1(P

]K[1
NEPNET

RJ

=                                          (17) 



Since noisePfNEP =∆  and ∆f = 1/2tm, the integration time tσ necessary to detect a 

source with a signal to noise ratio σ is calculated from the NEP, or NEFD or NET as: 
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σ= σσσ     (18) 

To get rid of the factor ½ in the formula, an astrophysicist trick consists of including it 
in the noise definitions, and indicates this choice using seconds in the units: 

[ ] [ ] [ ] [ ]
2

HzKNET
sKNET

2

HzJyNEFD
sJyNEFD =⋅=⋅             (19) 

 The values of tσ calculated with the noise term above the atmosphere (BNEP) are 10 
to 30 % higher than calculated with the noise term at the detector (NEP). With BNEP 
the frequency dependent transmissions are averaged on the filter bandwidth, which 
does not reflect the exact effect of the atmosphere on “astrophysical” photons. 

Table 5 gives the ideal pixel sensitivity in terms of equivalent noise, integration 
time at a given flux level, and minimum flux detected after a given integration time. 
Integration time and minimum flux are both calculated for a 3σ signal to noise ratio. 

 
Table 5. Pixel sensitivity in terms of NEFD, NET, integration time to detect a 1mJy source at 

3σ, and flux detection limit at 3σ in 1 hour. The integration time is a continuous observation of 
the source. This “snap-shot” mode supposes negligible sky noise and background rejection in 
the data processing; On-Off would takes 4× longer. The time is calculated for the 2 extreme 
cases where the center of the source is either at the center of a pixel or at the corner (which 
represent an actual sensitivity per pixel less than a mJy). The pixel angular coverage, total 
background powers, wished instrumental NEPs and total NEPs are recalled for information.  

Value in each band for 1 (7) mm of water vapor Parameter 
3.20 mm 
94 GHz 

2.05 mm 
146 GHz 

1.25 mm 
240 GHz 

0.87 mm 
345 GHz 

Pixel coverage [arc sec] 11.3 7.3 4.4 3.1 

Pbkg [pW] 5.0 (6.5) 6.0 (10.8) 16.9 (37.7) 6.7 (13.9) 

NEPint [10−17W/ Hz ] 1.0 1.3 2.7 2.0 

NEPTOT [10−17W/ Hz ] 3.2 (3.7) 4.1 (5.9) 8.5 (15) 6.4 (11) 

NEFD [mJy· s ] 0.17 (0.21) 0.20 (0.36) 0.21 (0.64) 0.85 (9.64) 

NET [µK· s ] 263 (326) 315 (568) 337 (1159) 1342 (16130) 

t(1mJy,3σσσσ) center [min] 0.3 (0.5) 0.6 (2.0) 2.0 (17.2) 184 (2××××104) 

t(1mJy,3σσσσ) corner [min] 0.5 (0.7) 1.0 (3.0) 2.9 (25.7) 273 (3××××104) 

F(1hr,3σ) [mJy] 0.09 (0.11) 0.13 (0.23) 0.22 (0.66) 2.1 (24) 

 
Filled arrays approaching the ambitious performances of table 5 are currently tested 

([10], [21] and others). A precise comparison with existing instrument is difficult 
because it is related to the filled array versus feed horns discussion, where respective 
performances depend on many factors (observed objects, sky conditions, observing 
mode, data processing). But to give a feeling of the improvement the ideal bolometer 
array would represent compared to current instrument, table 6 displays a comparison 
between MAMBO 2 [7] and an optimal filled array with pixel angular acceptances 2.5 
times larger than the ideal pixel in previous tables. This effective pixel angular size 
(θ = 4λ/πD) is chosen to match the MAMBO 2 pixel size, defined as the half power 
beam width (HPBW) of the feed horn plus telescope diffraction pattern [22]. The 
coupling of the effective pixel with the 30m presents a beam throughput U = λ2 (a 
standard value sometimes used in literature for instrument comparison [15]). 



Table 6. MAMBO 2 and ideal effective pixel sensitivities. MAMBO 2 parameters are from 
[22] and its integration times are calculated with the IRAM time estimator web tool [23]. For 
the effective pixel, the times correspond to the detection of a 1mJy point source at 3σ level 
with the center of the diffraction pattern either at the center of the pixel or at the corner. OnOff 
mode supposes half of the time spent on the source and half of the time on a reference. 
Mapping mode supposes On The Fly observation for MAMBO 2, and a “snap-shot” for the 
effective pixel array (all the time on the source, assuming no sky noise and no stray light). 

MAMBO 2,  1.20 mm 
2 mm wv 

Ideal effective pixel, 1.25 mm 
1 (7) mm wv 

 
Parameter 

sky noise 
reduction 

no sky noise 
reduction 

source max 
pixel center 

source max 
pixel corner 

Pixel coverage ["] 11 (HPBW) 11 (=4λ /πD) 

Spacin between pixel ["] 20 ~ 0 

Pbkg [pW] n/a 103 (231) 

NEPint [10−17W/ Hz ] n/a 7.4 

NEPTOT [10−17W/ Hz ] n/a 23 (46) 

NEFD OnOff [mJy· s ] 40 1.2 (4.1) 

NEFD mapping [mJy· s ] 45  
(On The Fly) 

0.6 (2.0) 
(snap-shot) 

t(1mJy) OnOff [min] 60 204 3.1 (36) 17 (201) 

t(1mJy) mapping 
260"×260" [min] 

820 3200 0.8 (9) 4.4 (50) 

 
Tables 6 and 5 give an idea of the huge margin of progress available at the 30m. The 
theoretical “snap-shot” mode though, supposes no additional background and noise; 
in particular neither stray light nor sky noise (atmospheric turbulences). The sky noise 
can roughly be modeled as a 1/f noise, a systematic that can’t be reduced with 
integration time. Its cut-off frequency is not well defined in the radio range, but 
experimental data suggest that the signal bandwidth could be shifted above the sky 
noise thanks to an image sampling rate around 120 Hz [20], implying a very fast 
electronic capable of sampling the pixels at several kHz. Even with the sky noise and 
stray lights problems addressed correctly, other factors depending on observed objects 
may reduce the gap between MAMBO 2 and a real optimal filled array [6]. 
The comparison of table 5 with table 6 shows that the detection time is shorter and 
more homogenous for small pixels than big pixels (which is another advantage than 
the gain in resolution), at the price of a more ambitious intrinsic noise to beat the 
photon noise. This is due to a better ratio of point source energy versus background 
energy (small pixels covers only the maximum of the diffraction blob), and a smaller 
difference between neighbor pixels implying smaller time difference between blob 
maximum at the center of a pixel or at corner.    

The information of the instrumental field of view (FOV) and filling factor are as 
important as the pixel sensitivity to give a real sense of the instrument performance. 
Indeed, mapping a 8×8 arcmin2 FOV would take more than twice the time given in 
table 5 with an ideal instrument using the current optics of the 30m, but bigger FOV 
could be mapped with the same time as table 5 thanks to bigger instruments coupled 
to a new wider optical system covering at least 10 arc minutes in diameter. Hence, the 
ideal instrument sensitivity on the 30m telescope with updated optics is 1 mJy at 
3σσσσ in 0.3, 0.6, 2.0, and 284 minutes for respectively 3.2, 2.05, 1.25 and 0.87 mm 
bands on a 122 arcmin2 FOV. 
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