Relative to $\eta$

$Tcal$ has a slightly different definition in this case, and

  $\displaystyle \frac{\partial Tcal}{\partial \eta} = \frac{Tcal}{\eta} +
\frac{\...
...Tau} +
\frac{\partial Trec}{\partial \eta} \frac{\partial Tcal}{\partial Trec}
$ (48)
  $\displaystyle \frac{\partial Tau}{\partial \eta} =
\frac{1}{T_{atm} * F_{eff}}\frac{\partial Temi}{\partial \eta}
$ (49)
  $\displaystyle \frac{\partial Temi}{\partial \eta} =
-\frac{T_{emi}+Trec}{\eta ^2} +
\frac{\partial Trec}{\partial \eta} \frac{T_{emi}-T_{load}}{T_{load}+Trec}
$ (50)

In TREC mode, derivative with respect to $Trec$ must be omitted, and

  $\displaystyle \frac{1}{Tcal} \frac{\partial Tcal}{\partial \eta} =
\frac{\eta * T_{atm} * F{eff} - T_{emi} - Trec}{\eta ^2}
$ (51)

With a cold load, a corresponding equation could be derived using

  $\displaystyle \frac{\partial Trec}{\partial \eta} =
Trec \frac{Trec-T_{cold}}{T_{load}- \eta * T_{cold} + (1-\eta) * Trec}
$ (52)