NOEMA spectral setups
Nomenclature and ASTRO implementation
05-Jul-2021

Jeremie Boissier
Overview

Frontend:
Receiver + IF transport

Data Flow

Backend:
Correlator
IF processing

Astronomy

Geometric delay
Overview

Frontend: Receiver+IF transport

Observer sets the receiver and correlator configurations

Backend: IF processing

Correlator

Astronomy
Outline

1. NOEMA frontend and associated nomenclature
   • Receiver Bands
   • IF Outputs

2. NOEMA backend and associated nomenclature
   • IF Processing (Basebands)
   • Correlator modes
   • Spectral windows

3. Preparing observations in GILDAS\ASTRO
Outline

1. NOEMA frontend and associated nomenclature
   - Receiver Bands
   - IF Outputs

2. NOEMA backend and associated nomenclature
   - IF Processing (Basebands)
   - Correlator modes
   - Spectral windows

3. Preparing observations in GILDAS\ASTRO
NOEMA Frontend

NOEMA antennas are equipped with **heterodyne receivers**

- **Input:** Radio frequency signal at ~mm wavelengths (~70-380GHz)
- **Output:** Slices of sky signal down converted to lower frequencies (~0-20GHz)

  Size of the slices = **IF Bandwidth** (~8 GHz in case of NOEMA)

- Detecting devices are sensitive to narrow (~50-100 GHz) ranges of the spectrum
  - 4 **receiver bands** to cover 70 – 380 GHz range (i.e. 0.8 to 4.3 mm)
  - Call S17: Band 4 not available

<table>
<thead>
<tr>
<th>Band</th>
<th>$F_{\text{min}}$ GHz</th>
<th>$F_{\text{max}}$ GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band 1 (3mm)</td>
<td>70.384</td>
<td>119.872</td>
</tr>
<tr>
<td>Band 2 (2mm)</td>
<td>127.000</td>
<td>182.872</td>
</tr>
<tr>
<td>Band 3 (1mm)</td>
<td>196.128</td>
<td>276.000</td>
</tr>
</tbody>
</table>
**Heterodyne systems**

- **Down-convert the spectrum**
  - from Radio Frequency ($740 < F_{RF} < 280$ GHz in case of NOEMA)
  - to Intermediate Frequency ($4 < F_{IF} < 12$ GHz)

  **Done by mixing sky signal with locally produced reference frequency (Local Oscillator Frequency)**

  Tuning the receiver = setting the reference $F_{LO1}$ + optimizing some hardware parameters

- **2SB receiver band delivers 2 IF outputs of ~8 GHz width** (LSB: $F_{RF} = F_{LO1} - F_{IF}$ and USB: $F_{RF} = F_{LO1} + F_{IF}$)
Dual polarization

- 1 NOEMA receiving system detects 1 linear polarization
- Each receiver band contains 2 receiving systems: Horizontal and Vertical polarization
  - Separation grid on the incident path
  - Each receiver band contains 2 mixer-blocks (H, V) made of 2 mixers (USB, LSB)
  - H and V are independent: gain factor of 2 on time
  - No polarimetry yet (no cross product)
- Dual polar, 2SB receiver band delivers 4 IF outputs:
  
  HLSB HUSB VLSB VUSB

  They are all brought to the correlator room through optic fibers
Summary and nomenclature

- NOEMA antennas are equipped with 2SB, dual polarization, heterodyne receivers
  - Band 1: 70.4-121.6 GHz
  - Band 2: 124.4-183.6 GHz
  - Band 3: 196.4-279.6 GHz
- Tuning a receiver band = setting $F_{\text{LO1}} = F_{\text{RF}} \pm F_{\text{IF}}$
- NOEMA Receiver delivers 4 IF outputs:
  - HLSB HLSB VLSB VUSB
  - Width= ~8GHz
  - From ~4 to ~12 GHz in IF
Outline

1. NOEMA frontend and associated nomenclature
   - Receiver Bands
   - IF Outputs

2. NOEMA backend and associated nomenclature
   - IF Processing (Basebands)
   - Correlator modes
   - Spectral windows

3. Preparing observations in GILDAS\ASTRO
Overview

Frontend

Astronomy

Backend

Correlator

IF processing

NOEMA Spectral setups
NOEMA Backend

Very simplified view of a correlator

Electric field from 12 antennas
Receiver IF output (8 GHz)
$E(t)$
1 2 3... 12

PolyFiX
Designed for 12 antennas

1-2 1-3... 11-12
Visibility spectra for 66 baselines
$V(u,v)$

For each IF output from receivers:

- Analog to Digital conversion
  - Correlator receives analogical signal from all the antennas
  - The wider the band, the more difficult the conversion
    - Choice to split the input bandwidth into 2 parts of 4GHz
      - 0-4 GHz Basebands
        Done in the IF Processor

- Correlation
NOEMA Backend

IF Processing

- Adapt the output of the receiver to the input of the correlator
  - 1 NOEMA receiver band delivers 4 x ~8 GHz sidebands [4-12 GHz IF1]
  - 1 NOEMA correlator unit accepts 1 x ~4 GHz [0-4 GHz IF2] x 12 antennas
- IF processor splits each sideband into 2 x ~4GHz basebands
  - Downconversion to 0-4 GHz IF2
NOEMA Backend

IF Processing

- Adapt the output of the receiver to the input of the correlator
  - 1 NOEMA receiver band delivers 4 x ~8 GHz sidebands [4-12 GHz IF1]
  - 1 NOEMA correlator unit accepts 1 x ~4 GHz [0-4 GHz IF2] x 12 antennas
- IF processor splits each sideband into 2 x ~4GHz basebands
  - Nomenclature: Outer and Inner baseband
NOEMA Backend

IF processing summary:
8 Basebands (0-4 GHz IF2) feed 8 correlator units
For each IF output from receivers:

- Analog to Digital conversion
  - Correlator receives analogical signal from all the antennas
  - The wider the band, the more difficult the conversion
    - Choice to split the input bandwidth into 2 parts of 4GHz
      - 0-4 GHz Basebands
        - Done in the IF Processor

- Correlation of 2 independent basebands
  - 8 correlator units in total
NOEMA Backend

PolyFiX correlator: 8 identical and independent units

- Input: 0-4 GHz baseband (x 12 antennas)
- Signal is digitized
- Baseband is split in **64 Chunks** of 64 MHz on a fixed grid
  - “Overlapping Polyphase Filter Bank”
  - Last 3 chunks thrown away (antialiasing filter)
  
  **Effective bandwidth=3872 MHz**
Summary:

8 Basebands (0-4 GHz IF2) feed 8 correlator units

- With exact bandwidth:
NOEMA Backend

PolyFiX correlator: 8 identical and independent units

- Input: 0-4 GHz baseband (x 12 antennas)
- Signal is digitized
- Baseband is split in 64 Chunks of 64 MHz on a fixed grid
  - “Overlapping Polyphase Filter Bank”
  - Last 3 chunks thrown away (antialiasing filter)
    Effective bandwidth=3872 MHz
  - LO2 Separation:
    + Parasite at 0 MHz IF2 (7744 IF1)
      - First 10 MHz unusable
    + Efficiency loss in the first 50 MHz
NOEMA Backend

PolyFiX correlator: 8 identical and independent units

- Input: 0-4 GHz baseband (x 12 antennas)
- Signal is digitized
- Baseband is split in 64 Chunks of 64 MHz on a fixed grid
  - “Overlapping Polyphase Filter Bank”
  - Last 3 chunks thrown away (antialiasing filter)
    Effective bandwidth=3872 MHz
  - LO2 Separation:
    + First 10 MHz unusable
    + Efficiency loss in the first 100 MHz
- Fourier Transform and cross multiplication (FX)
  - Done chunk by chunk
  - Reprogrammable: Correlator modes
NOEMA Backend

PolyFiX correlator Modes:

- **Capabilities for a single unit**
- **Mode 1: Continuum + Lines**
  - 61 chunks at Low resolution (2MHz); total bandwidth 3872 MHz
  - **AND** 16 chunks at High resolution (62.5kHz); bandwidth 64 MHz each
  - Unique mode at delivery in 2017
- **Mode 2: “Survey”** [not available yet]
  - 61 chunks at 250 kHz; total bandwidth 3872 MHz
- **Mode 3: Continuum and high resolution lines** [not available yet]
  - Similar to mode 1 with higher resolution in less chunks

<table>
<thead>
<tr>
<th></th>
<th>1 Unit</th>
<th>All Units</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mode 1 (S17):</strong></td>
<td>61 chunks (3872 MHz) at 2 MHz resolution AND 16 chunks at 62.5 kHz resolution*</td>
<td>~16 GHz x 2 polar with 2 MHz channels AND 8 GHz with 62.5kHz channels*</td>
</tr>
<tr>
<td>Continuum + Lines</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Mode 2: Survey</strong></td>
<td>61 chunks (3872 MHz) at 250 kHz resolution</td>
<td>~16 GHz x 2 polar with 250 kHz channels</td>
</tr>
<tr>
<td><strong>Mode 3: Continuum + High Resolution</strong></td>
<td>&lt;61 chunks (3872 MHz) at 2 MHz resolution AND 8/4/2 chunks at 31.25/15.625/7.8125 kHz resolution*</td>
<td>&lt;16 GHz x 2 Polar with 2 MHz channels AND 4/2/1 GHz with 31.25/15.625/7.8125kHz channels*</td>
</tr>
</tbody>
</table>

*High resolution chunks chosen among the 61 of the fixed filter bank
The output of the correlator is a number of **spectral windows**

In a given baseband, a **spectral window** is a set of contiguous chunks processed at the same spectral resolution

With the default mode:

1. Correlator Unit output is made of:
   - 1 low resolution spectral window (made of 61 chunks)
   - 1\(<n_{\text{spw}}\)<16 high resolution spectral windows (made of 16\(>n_{\text{chunks}}\)>1 chunks)

![Diagram of chunk number vs. IF2 frequency](image)

1 low resolution SPW (3872 MHz wide, 2000 kHz channels)

1 high resolution SPW (1024 MHz wide, 62.5 kHz channels)

1 low resolution SPW (3872 MHz wide, 2000 kHz channels)

16 high resolution SPW (64 MHz wide each, 62.5 kHz channels)

1 low resolution SPW (3872 MHz wide, 2000 kHz channels)

4 high resolution SPW (widths: 384, 192, 320, 128 MHz, 62.5 kHz channels)
NOEMA Backend

Summary

- Each 4-12 GHz IF output of the receivers split into 2 basebands (0-4GHz IF2)

- 8 Basebands (0-4GHz) feed 8 Correlator units

<table>
<thead>
<tr>
<th>Mode 1 (2017): Continuum + Lines</th>
<th>1 Unit</th>
<th>All Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>61 chunks (3872 MHz) at 2 MHz resolution AND 16 chunks at 62.5 kHz resolution*</td>
<td>~16 GHz x 2 polar with 2 MHz channels AND 8 GHz with 62.5kHz channels*</td>
<td></td>
</tr>
</tbody>
</table>

| Mode 2: Survey | 61 chunks (3872 MHz) at 250 kHz resolution | ~16 GHz x 2 polar with 250 kHz channels |
| Mode 3: Continuum + High Resolution | <61 chunks (3872 MHz) at 2 MHz resolution AND 8/4/2 chunks at 31.25/15.625/7.8125 kHz resolution* | <16 GHz x 2 Polar with 2 MHz channels AND 4/2/1 GHz with 31.25/15.625/7.8125kHz channels* |

*High resolution chunks chosen among the 61 of the fixed filter bank
Outline

1. NOEMA frontend and associated nomenclature
   • Receiver Bands
   • IF Outputs

2. NOEMA backend and associated nomenclature
   • IF Processing (Basebands)
   • Correlator modes
   • Spectral windows

3. Preparing observations in GILDAS\ASTRO
How to prepare NOEMA spectral setups?

Need for software tools to visualize frequency coverage

- New receivers and correlator
- Increased complexity and flexibility

Need for a tool to set the receiver/correlator configuration when preparing a proposal

- Old (pre-PolyFiX) way of configuring Narrow Band in the proposal management system is not satisfactory for up to 128 high resolution spectral windows.

Everything in the Gildas package ASTRO (feb17 and later releases)

- New commands implemented
  - Set up the hardware configuration
  - Visualize the frequency coverage
  - Follow the usage of resources
  - Export a script to be uploaded to the proposal management system
Use ASTRO in Gildas

$astro
OBSERVATORY NOEMA
TIME

Define a source (with a given velocity or redshift)

SOURCE

Define a receiver band tuning

TUNING

Select a/some baseband(s) + associated correlator mode

BASEBAND

Define flexible spectral windows (in the selected BB)

- Select the 16 high resolution chunks
  SPW

Examine my current settings

LIST
PLOT

Remove a spectral window

RESET

Get a final script (to be uploaded @ pms/iram.fr)

PROPOSAL /FILE

Other useful commands:

- Get some help
  HELP COMMAND
- Show molecular lines on frequency plots
  SET LINES ON
- Choose line profile to be drawn
  SET LINES GAUSS 100
- Change the catalog of lines
  CATALOG Myfile.lin /LINE
- Choose the frequency axis
  SET FREQUENCY Main Second
- Prepare interlaced tunings
  SPECSWEEP command (see HELP)
NOEMA setups in ASTRO

Prepare the environment:

OBSERVATORY NOEMA
TIME 00:00:00.0 20-OCT-2016

SOURCE MySource EQ 2000 10:00:00.0 20:00:00.0 LSR 0
   MySource    Azimuth -121.78699    Elevation  -2.75186
   MySource   V(S/OBS) =   -21.668 [S/LSR=  0.000,LSR/G=  4.952,G/OBS=-26.620]
   MySource    Redshift      0.000
! Full SOURCE can be entered to enable Doppler computations

SOURCE /DOPPLER LSR 100 or SOURCE /DOPPLER REDSHIFT 0.5
! to take into account a typical LSR or Redshift without additionnal
Doppler computations (i.e. No Earth or Observatory contribution)

SET LINES GAUSS 100
! Lines from the catalog will be indicated by a gaussian (width=100MHz)
NOEMA setups in ASTRO

Define the receiver tuning

TUNING ! Display the coverage of available receiver bands
! Nothing actually DONE, only plot

I-TUNING, Showing the coverage of NOEMA receiver bands
TUNING /INFO ! Returns main receiver characteristics
NOEMA setups in ASTRO

Define the receiver tuning

TUNING ! Display the coverage of available receiver bands

TUNING 230.538 LSB 6500 ! tune 230.538 REST at 6500 IF1 in LSB

I-TUNING, Resetting tuning
I-TUNING, Selecting the Band_3 band of the NOEMA receiver
I-TUNING, FRF = 230.55466 GHz
I-TUNING, FLO1 = 237.05466 GHz
I-TUNING, FLOTUNE = 237.03800 GHz
I-TUNING, Original tuning does not match the grid
I-TUNING, Tuning automatically shifted to the IF Frequency = 6462.000 MHz
I-TUNING, This corresponds to a shift of 38.000 MHz
I-TUNING, Actual command:
TUNING 230.538 LSB 6462.000
I-TUNING, Selecting the Band_3 band of the NOEMA receiver
I-TUNING, FRF = 230.55466 GHz
I-TUNING, FLO1 = 237.01666 GHz
I-TUNING, FLOTUNE = 237.00000 GHz
I-TUNING, Correlator input # 1 contains B3HUO
I-TUNING, Correlator input # 2 contains B3HUI
I-TUNING, Correlator input # 3 contains B3VUO
I-TUNING, Correlator input # 4 contains B3VUI
I-TUNING, Correlator input # 5 contains B3HLO
I-TUNING, Correlator input # 6 contains B3HLI
I-TUNING, Correlator input # 7 contains B3VLO
I-TUNING, Correlator input # 8 contains B3VLI
Define the receiver tuning

**TUNING** ! Display the coverage of available receiver bands
TUNING 230.538 LSB 6500 ! tune 230.538 REST at 6500 IF1 in LSB

I-TUNING, Resetting tuning
I-TUNING, Selecting the Band_3 band of the NOEMA receiver
I-TUNING, FRF = 230.55466 GHz
I-TUNING, FL01 = 237.05466 GHz
I-TUNING, FLOTUNE = 237.03800 GHz

I-TUNING, Original tuning does not match the grid
I-TUNING, Tuning automatically shifted to the IF Frequency = 6462.000 MHz
I-TUNING, This corresponds to a shift of 38.000 MHz
I-TUNING, Actual command:
TUNING 230.538 LSB 6462
I-TUNING, Selecting the Band_3 band of the NOEMA receiver
I-TUNING, FRF = 230.55466 GHz
I-TUNING, FL01 = 237.01666 GHz
I-TUNING, FLOTUNE = 237.00000 GHz

I-TUNING, Correlator input # 1 contains B3HUO
I-TUNING, Correlator input # 2 contains B3HUI
I-TUNING, Correlator input # 3 contains B3VUO
I-TUNING, Correlator input # 4 contains B3VUI
I-TUNING, Correlator input # 5 contains B3HLO
I-TUNING, Correlator input # 6 contains B3HLI
I-TUNING, Correlator input # 7 contains B3VLO
I-TUNING, Correlator input # 8 contains B3VLI
Define the receiver tuning

TUNING ! Display the coverage of available receiver bands
TUNING 230.538 LSB 6500 /ZOOM ! tune 230.538 REST at 6500 IF1 in LSB

I-TUNING, Resetting tuning
I-TUNING, Selecting the Band_3 band of the NOEMA receiver
I-TUNING, FRF = 230.55466 GHz
I-TUNING, FLO1 :
I-TUNING, FLOTUNE :
I-TUNING, Original :
I-TUNING, Tuning autom:
I-TUNING, This corre:
I-TUNING, Actual corre:
TUNING 230.538 LSB 6500
I-TUNING, Selecting
I-TUNING, FRF :
I-TUNING, FLO1 :
I-TUNING, FLOTUNE :
I-TUNING, Correlato

NOEMA Spectral setups
NOEMA setups in ASTRO

Select a/some basebands and assign a correlator mode

BASEBAND SelectionCode [/MODE [df1 [df2]]|OFF]

! Selection code = baseband identification: combination of H/V,U/L,O/I

! /MODE option to select a mode

BASEBAND

! No selection restriction: (H+V) x (U+L) x (O+I) = 8 basebands selected

! No /MODE: no mode applied

! no SPW created

Nota Bene:
Change of syntax of BASEBAND command as of May21 gildas distribution
NOEMA setups in ASTRO

Select a/some basebands and assign a correlator mode

**BASEBAND SelectionCode [/MODE [df1 [df2] |OFF]**

! Selection code = baseband identification: combination of H/V, U/L, O/I
! /MODE option to select a mode

**BASEBAND /MODE 2000 62.5** ! all basebands selected

! 2000 62.5 = Continuum+Line mode
! Low res SPW created
Select a/some basebands and assign a correlator mode

BASEBAND SelectionCode [/MODE [df1 [df2]]|OFF]

! Selection code = baseband identification: combination of H/V,U/L,O/I
! /MODE option to select a mode

BASEBAND /MODE 2000 62.5  ! all basebands selected, mode cont+line
BASEBAND H /MODE 250
! H polar selected (H x (U+L) x (I+O) = 4 Basebands)
! Mode full bb at 250kHz
! V polar not touched

Note that the 250kHz mode is not offered for W21 semester
Select a/some basebands and assign a correlator mode

BASEBAND SelectionCode [/MODE [df1 [df2]]|OFF]

! Selection code = baseband identification: combination of H/V,U/L,O/I
! /MODE option to select a mode

BASEBAND /MODE 2000 62.5 ! all basebands selected, mode cont+line
BASEBAND H /MODE 250! H polar selected, Mode full bb at 250kHz
BASEBAND ! Select all baseband, keep modes
Select a/some basebands and assign a correlator mode

BASEBAND SelectionCode [/MODE [df1 [df2]]|OFF]
! Selection code = baseband identification: combination of H/V,U/L,O/I
! /MODE option to select a mode
BASEBAND /MODE 2000 62.5  ! all basebands selected, mode cont+line
BASEBAND H /MODE 250! H polar selected, Mode full bb at 250kHz
BASEBAND  ! Select all baseband, keep modes
BASEBAND L ! Lower sideband: (H+V) x L x (I+O) = 4 Basebands, keep modes
Select a/some basebands and assign a correlator mode

BASEBAND SelectionCode [/MODE [df1 [df2]]|OFF]
! Selection code = baseband identification: combination of H/V,U/L,O/I
! /MODE option to select a mode
BASEBAND /MODE 2000 62.5 ! all basebands selected, mode cont+line
BASEBAND H /MODE 250! H polar selected, Mode full bb at 250kHz
BASEBAND ! Select all baseband, keep modes
BASEBAND L ! Lower sideband: (H+V) x L x (I+O) = 4 Basebands, keep modes
BASEBAND I ! Inner basebands: (H+V) x (L+U) x I = 4 Basebands, keep modes
NOEMA setups in ASTRO

Select a/some basebands and assign a correlator mode

BASEBAND SelectionCode [/MODE [df1 [df2]]|OFF]
! Selection code = baseband identification: combination of H/V,U/L,O/I
! /MODE option to select a mode
BASEBAND /MODE 2000 62.5  ! all basebands selected, mode cont+line
BASEBAND H /MODE 250! H polar selected, Mode full bb at 250kHz
BASEBAND ! Select all baseband, keep modes
BASEBAND L ! Lower sideband: (H+V) x L x (I+O) = 4 Basebands, keep modes
BASEBAND I ! Inner basebands: (H+V) x (L+U) x I = 4 Basebands, keep modes
BASEBAND UI ! USB, Inner BB: (H+V) x U x I = 2 Basebands, keep modes
Select a/some basebands and assign a correlator mode

```
BASEBAND SelectionCode [/MODE [df1 [df2]]]|OFF|
! Selection code = baseband identification: combination of H/V,U/L,O/I
! /MODE option to select a mode
BASEBAND /MODE 2000 62.5 ! all basebands selected, mode cont+line
BASEBAND H /MODE 250! H polar selected, Mode full bb at 250kHz
BASEBAND ! Select all baseband, keep modes
BASEBAND L ! Lower sideband: (H+V) x L x (I+O) = 4 Basebands, keep modes
BASEBAND I ! Inner basebands: (H+V) x (L+U) x I = 4 Basebands, keep modes
BASEBAND UI ! USB, Inner BB: (H+V) x U x I = 2 Basebands, keep modes
BASEBAND VUI ! Polar V, USB, Inner BB: V x U x I = 1 Baseband, keep modes
```

---

**Band 3**

REST: 230.538 GHz (LSR: 230.538, RF: 230.555) IF1: 6462 MHz LSB

- $V_{LSR} = 0 \text{ km s}^{-1}$
- $V_{Dop} = -21.7 \text{ km s}^{-1}$

---

**NOEMA Spectral setups**
NOEMA setups in ASTRO

Define Spectral Windows

BASEBAND /MODE 2000 62.5 ! Only mode available now applied to all BB
BASEBAND VUI ! 1 baseband selected
SPW /FREQUENCY 243.25 0.3
! 1 SPW covering a range centered at 243.25 with a width of 300 MHz
  I-SPW,  SPW fits in unit 4 B3VUI
  I-SPW,  Spectral window covers chunks 22 to 27
  I-SPW,  Unit B3VUI High_Res is used at 38%
LIST
  I-LIST,  9 spectral windows defined:
  SPW 1 in B3HLO: df = 2000.000 kHz, Chunks 1 to 61, REST 225384.37 to 229256.09 MHz
  [...]
  SPW 8 in B3VUO: df = 2000.000 kHz, Chunks 1 to 61, REST 244742.97 to 248614.69 MHz
  SPW 9 in B3VUI: df = 62.500 kHz, Chunks 22 to 27, REST 243047.10 to 243431.07 MHz

Nota Bene:
Actual coverage is not exactly 300 MHz
(6 x 64=384 MHz)
The system uses the chunks necessary to
cover the requested range
Chunks are on a fixed grid, with a fixed width
Define Spectral Windows

BASEBAND UI
NOEMA setups in ASTRO

Define Spectral Windows

BASEBAND UI

SPW /RANGE 241.6 242 ! SPW from 241.6 to 242 in H and V (2SPW)

I-SPW, SPW fits in unit 2 B3HUI
I-SPW, Spectral window covers chunks 44 to 50
I-SPW, Unit B3HUI High_Res is used at 44%
I-SPW, SPW fits in unit 4 B3VUI
I-SPW, Spectral window covers chunks 44 to 50
I-SPW, Unit B3VUI High_Res is used at 81%

LIST

I-LIST, 11 spectral windows defined:

[...]SPW 1 in B3HLO: df = 2000.000 kHz, Chunks 1 to 61, REST 225384.37 to 229256.09 MHz
SPW 8 in B3VOU: df = 2000.000 kHz, Chunks 1 to 61, REST 244742.97 to 248614.69 MHz
SPW 9 in B3HUI: df = 62.500 kHz, Chunks 44 to 50, REST 241575.20 to 242023.17 MHz
SPW 10 in B3VUI: df = 62.500 kHz, Chunks 44 to 50, REST 241575.20 to 242023.17 MHz
SPW 11 in B3VUI: df = 62.500 kHz, Chunks 22 to 27, REST 243047.10 to 243431.07 MHz

Nota Bene:
Actual SPW width is not exactly 400 MHz
(7 x 64 = 448 MHz)
Chunks are on a fixed grid, with a fixed width
Define Spectral Windows

BASEBAND UI

SPW /CHUNK 56 to 61 ! 2 SPW defined by chunk numbers

I-SPW, Unit B3HUI High_Res is used at 81%
I-SPW, Unit B3VUI High_Res is used at 119%
W-SPW, You are using more resources than available

! Setup using more than 16 high res chunks in VUI

Nota Bene:

/CHUNK option available only when the baseband selection contains only 1 frequency range (eventually dual polars).
NOEMA setups in ASTRO

Define Spectral Windows

BASEBAND UI

SPW /CHUNK 56 to 61 ! 2 SPW defined by chunk numbers

I-SPW, Unit B3HUI High_Res is used at 81%
I-SPW, Unit B3VUI High_Res is used at 119%
W-SPW, You are using more resources than available

! Setup using more than 16 high res chunks in VUI

RESET LAST

I-RESET, Resetting Spectral Window # 10
I-RESET, Resetting Spectral Window # 9
I-LIST, 11 spectral windows defined:
SPW 1 in B3HLO: df = 2000.000 kHz, Chunks 1 to 61, REST 225384.37 to 229256.09 MHz [...]
SPW 9 in B3HUI: df = 62.500 kHz, Chunks 44 to 50, REST 241575.20 to 242023.17 MHz
SPW 10 in B3VUI: df = 62.500 kHz, Chunks 44 to 50, REST 241575.20 to 242023.17 MHz
SPW 11 in B3VUI: df = 62.500 kHz, Chunks 22 to 27, REST 243047.10 to 243431.07 MHz

Band 3 REST: 230.538 GHZ (LSR: 230.538, RF: 230.555) IF1: 6462.000 MHz LSB

MySource

$V_{\text{LSR}} = 0 \text{ km s}^{-1}$

$V_{\text{Dop}} = -21.7 \text{ km s}^{-1}$

NOEMA Spectral setups
NOEMA setups in ASTRO

Define Spectral Windows

BASEBAND UI

SPW /CHUNK 42 to 45

I-SPW, Unit B3HUI High_Res is used at 56%
I-SPW, Unit B3VUI High_Res is used at 94%
W-SPW, SPW #9 uses conflicting chunk(s)
W-SPW, SPW #10 uses conflicting chunk(s)
W-SPW, SPW #11 uses conflicting chunk(s)
W-SPW, SPW #12 uses conflicting chunk(s)

! Setup using several times the same chunks
Define Spectral Windows

BASEBAND UI

SPW /CHUNK 42 to 45

! Setup using several times the same chunks

LIST

[...]

SPW 9 in B3HUI: df = 62.500 kHz, Chunks 44 to 50, REST 241575.20 to 242023.17 MHz !Conflict!
SPW 10 in B3VUI: df = 62.500 kHz, Chunks 44 to 50, REST 241575.20 to 242023.17 MHz !Conflict!
SPW 11 in B3HUI: df = 62.500 kHz, Chunks 42 to 45, REST 241895.18 to 242151.16 MHz !Conflict!
SPW 12 in B3VUI: df = 62.500 kHz, Chunks 42 to 45, REST 241895.18 to 242151.16 MHz !Conflict!
SPW 13 in B3VUI: df = 62.500 kHz, Chunks 22 to 27, REST 243047.10 to 243431.07 MHz
NOEMA setups in ASTRO

Define Spectral Windows

BASEBAND UI

SPW /CHUNK 42 to 45

! Setup using several times the same chunks

LIST

[...]

SPW 9 in B3HUI: df = 62.500 kHz, Chunks 44 to 50, REST 241575.20 to 242023.17 MHz !Conflict!
SPW 10 in B3VUI: df = 62.500 kHz, Chunks 44 to 50, REST 241575.20 to 242023.17 MHz !Conflict!
SPW 11 in B3HUI: df = 62.500 kHz, Chunks 42 to 45, REST 241895.18 to 242151.16 MHz !Conflict!
SPW 12 in B3VUI: df = 62.500 kHz, Chunks 42 to 45, REST 241895.18 to 242151.16 MHz !Conflict!
SPW 13 in B3VUI: df = 62.500 kHz, Chunks 22 to 27, REST 243047.10 to 243431.07 MHz

RESET 9 10

[...]

SPW 9 in B3HUI: df = 62.500 kHz, Chunks 42 to 45, REST 241895.18 to 242151.16 MHz
SPW 10 in B3VUI: df = 62.500 kHz, Chunks 42 to 45, REST 241895.18 to 242151.16 MHz
SPW 11 in B3VUI: df = 62.500 kHz, Chunks 22 to 27, REST 243047.10 to 243431.07 MHz
NOEMA setups in ASTRO

Visualize current state

PLOT
PLOT /RECEIVER
NOEMA setups in ASTRO

Visualize current state

PLOT
PLOT /RECEIVER
Define Spectral Windows

BASEBAND  ! All basebands selected
NOEMA setups in ASTRO

Define Spectral Windows

- **BASEBAND**: All basebands selected
- **SPW /FREQUENCY 230.538 0.4**
- **SPW /RANGE 226.5 227.1**
- **SPW /RANGE 227.3 227.6**
- **SPW /FREQUENCY 245.6 0.4**
NOEMA setups in ASTRO

Define Spectral Windows

BASEBAND ! All basebands selected
SPW /FREQUENCY 230.538 0.4
SPW /RANGE 226.5 227.1
SPW /RANGE 227.3 227.6
SPW /FREQUENCY 245.6 0.4
PLOT /RECEIVER
PROPOSAL /FILE File.ext

! write the minimal series of commands define to set up the instrument (in NOEMAOFFLINE language)

The file created by the PROPOSAL command contains all the information required by the Proposal Management System to define a typical hardware setup.
NOEMA spectral setups in ASTRO

Frequency axes

- All previous ASTRO plots were in REST frequency
- Actual frequency in the receiver is RF
- $F_{RF} = F_{REST} \times \text{DopplerFactor}$
  - Observatory contribution:
    + Earth rotation + revolution ($<30 \text{ km/s} \sim 10 \text{ MHz} @ 100 \text{ GHz}$)
      Varies with time
  - Source contribution:
    + LSR velocity ($\sim 100 \text{ km/s} \sim 30 \text{ MHz} @ 100 \text{ GHz}$)
    + Redshift
      - 350GHz REST @ $z=2.5$ observed at $\sim 100 \text{ GHz}$ in RF
- **Doppler corrections at NOEMA**
  - Source LSR taken into account
    + $F_{LO}$ is shifted
  - Earth Doppler corrected on real time (Doppler tracking)
    + $F_{LO}$ changes with time
  - Redshift not corrected
    + Compute redshifted frequency and assume $z$ and LSR = 0
    + ASTRO can help (SET FREQUENCY [LSR|REST])
Example with redshifted source

SET FREQUENCY REST LSR ! Main axis=REST, Secondary=LSR
! Main axis = Lower axis on plot + Input/Output in terminal
CATA CO.DAT /LINE ! Local file with only CO transitions
SET LINES GAUSS 500
SOURCE GAL EQ 2000 10 10 RED 2.5
TUNING
NOEMA spectral setups in ASTRO

Example with redshifted source

SET FREQUENCY REST  LSR ! Main axis=REST, Secondary=LSR
! Main axis = Lower axis on plot + Input/Output in terminal
CATA CO.DAT /LINE ! Local file with only CO transitions
SET LINES GAUSS 500
SOURCE GAL EQ 2000 10 10 RED 2.5
TUNING
TUNING 350 USB 6500
Example with redshifted source

SET FREQUENCY REST LSR ! Main axis=REST, Secondary=LSR
! Main axis = Lower axis on plot + \textbf{Input/Output in terminal}
CATA CO.DAT /LINE ! Local file with only CO transitions
SET LINES GAUSS 500
SOURCE GAL EQ 2000 10 10 RED 2.5
TUNING
TUNING 350 USB 6500
SET FREQ LSR REST
TUNING
NOEMA spectral setups in ASTRO

Example with redshifted source

```
SET FREQUENCY REST LSR  ! Main axis=REST, Secondary=LSR
! Main axis = Lower axis on plot + Input/Output in terminal
CATA CO.DAT /LINE  ! Local file with only CO transitions
SET LINES GAUSS 500
SOURCE GAL EQ 2000 10 10 RED 2.5
TUNING
TUNING 350 USB 6500
SET FREQ LSR REST
TUNING
TUNING 100 USB 6500
```
NOEMA spectral setups in ASTRO

Example with redshifted source

SET FREQUENCY REST LSR
! Main axis=REST, Secondary=LSR
! Main axis = Lower axis on plot + Input/Output in terminal
CATA CO.DAT /LINE ! Local file with only CO transitions
SET LINES GAUSS 500
SOURCE GAL EQ 2000 10 10 RED 2.5
TUNING
TUNING 350 USB 6500
SET FREQ LSR REST
TUNING
TUNING 100 USB 6500
BASEBAND U /MODE 2000 62.5
SPW /FREQUENCY 98.8 0.7

Chunks 34 to 45
Example with redshifted source

SET FREQUENCY REST LSR ! Main axis=REST, Secondary=LSR
! Main axis = Lower axis on plot + Input/Output in terminal
CATA CO.DAT /LINE ! Local file with only CO transitions
SET LINES GAUSS 500
SOURCE GAL EQ 2000 10 10 RED 2.5
TUNING
TUNING 350 USB 6500
SET FREQ LSR REST
TUNING
TUNING 100 USB 6500
BASEBAND U /MODE 2000 62.5
SPW /FREQUENCY 98.8 0.7
Chunks 34 to 45
RESET
SET FREQ REST LSR
BASEBAND U
Example with redshifted source

SET FREQUENCY REST LSR ! Main axis=REST, Secondary=LSR
! Main axis = Lower axis on plot + Input/Output in terminal
CATA CO.DAT /LINE ! Local file with only CO transitions
SET LINES GAUSS 500
SOURCE GAL EQ 2000 10 10 RED 2.5
TUNING
TUNING 350 USB 6500
SET FREQ LSR REST
TUNING
TUNING 100 USB 6500
BASEBAND U /MODE 2000 62.5
SPW /FREQUENCY 98.8 0.7
  Chunks 34 to 45
RESET
SET FREQ REST LSR
BASEBAND U
SPW /FREQ 345.8 2.45
  98.8*3.5=345.8, 0.7*3.5=2.45
  Chunks 34 to 45
NOEMA spectral setups in ASTRO

Example with redshifted source

```
SET FREQUENCY REST LSR ! Main axis=REST, Secondary=LSR
! Main axis = Lower axis on plot + Input/Output in terminal
CATA CO.DAT /LINE ! Local file with only CO transitions
SET LINES GAUSS 500
SOURCE GAL EQ 2000 10 10 RED 2.5
TUNING
TUNING 350 USB 6500
SET FREQ LSR REST
TUNING
TUNING 100 USB 6500
BASEBAND U /MODE 2000 62.5
SPW /FREQUENCY 98.8 0.7
RESET
SET FREQ REST LSR
BASEBAND U
SPW /FREQ 345.8 2.45
PROPOSAL /file MyFile2.astro
```

```
ASTRO> type MyFile2.astro
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! BEGIN INCLUDE_SETUP
SET LINES GAUSS 500.000
SOURCE GAL EQ 2000.000 10:00:00.000 10:00:00.000 RED 2.500000
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
SET FREQUENCY REST LSR
TUNING 350.000000 USB 6500.000
BASEBAND B1HLO OFF
BASEBAND B1HLI OFF
BASEBAND B1HUI /MODE 2000.00 62.50
SPW /CHUNK 34 TO 45
BASEBAND B1HUO /MODE 2000.00 62.50
BASEBAND B1VLO OFF
BASEBAND B1VL1I OFF
BASEBAND B1VUI /MODE 2000.00 62.50
SPW /CHUNK 34 TO 45
BASEBAND B1VUO /MODE 2000.00 62.50
! END INCLUDE_SETUp
```
Prepare interlaced tunings

1 Command to define several tunings:

- `SPECSWEEP /NTUNING 2 78` ! 2 tunings, starting at 78GHz, using default correlator mode
Prepare interlaced tunings

1 Command to define several tunings:

- `SPECSWEEP /NTUNING 2 78` ! 2 tunings, starting at 78GHz, using default correlator mode
- `SPECSWEEP 250 /NTUNING 2 110 MAX` ! 2 tunings, ending at 110GHz, 250kHz channel spacing correlator mode
Prepare interlaced tunings

1 Command to define several tunings:

- **SPECSWEEP /NTUNING 2 78** ! 2 tunings, starting at 78GHz, using default correlator mode
- **SPECSWEEP 250 /NTUNING 2 110 MAX** ! 2 tunings, ending at 110GHz, 250kHz channel spacing correlator mode
- **SPECSWEEP 250 /NTUNING 2 110 MAX /FILE mysurvey** ! 2 tunings, ending at 110GHz, 250kHz channel spacing correlator mode
  ! + 2 files created, ready to be uploaded to a technical sheet in PMS