Actual computations

The sensitivity estimator computes the relationship between $\Delta t_\ensuremath{\mathrm{}}$ and $\sigma_\ensuremath{\mathrm{Jy}}$ with

$\displaystyle \boxed{%
\ensuremath{\sigma_\ensuremath{\mathrm{Jy}}} =
\frac{\e...
...}}}{} = e^{-\frac{\ensuremath{\phi_\ensuremath{\mathrm{rms}}}^2}{2}} \le 1.0,
}$ (21)

where $T_\ensuremath{\mathrm{sys}}$ is interpolated in frequency and airmass from the table, and the other parameters are defined by the observatory. It then computes the relationship between $\sigma_\ensuremath{\mathrm{K}}$ and $\sigma_\ensuremath{\mathrm{Jy}}$ with

$\displaystyle \boxed{%
\ensuremath{\sigma_\ensuremath{\mathrm{K}}} = \frac{\en...
...remath{\theta_\ensuremath{\mathrm{min}}}}{4\,\ln{2}\,\ensuremath{\lambda}^2}.
}$ (22)