PYGILDAS: Interleaving Python and GILDAS

End-user and developer documentation

Sébastien Bardeau, Emmanuel Reynier,
Jérome Pety and Stéphane Guilloteau

24-apr-2018

Version 0.8

1 Context

Goal: to create an inter-operable environment in which a SIC driven program can also use all
Python facilities and vice-versa: a Python code could import a SIC-based program.

Method: first create a common space in which SIC and Python communicates by their respective
“objects”: SIC variables and Python NumPy arrays.

Content: description of the SIC variable to Python object mapping.

2 End-user documentation

2.1 Prerequisites (what you have to know)

If you wonder how to compile Gildas with the Python binding activated, please refer to section

F L1

2.1.1 Python basics

Identifiers To the opposite to SIC, Python (like C) is case sensitive. SIC variables will be
imported in Python variables with names arbitraryly lowercased. There are also a few forbidden
characters in Python identifiers, especially "%’ and ’$’. The dot ’. is reserved for a special
purpose. See subsection for more details.

Multidimensional-array arrangement in memory Multidimensional arrays in C (and thus
Python) are stored in row-major order; in Fortran they are in column-major order. For a 2-
dimensional array (matrix), this means that C stores each row contiguously in memory, while
Fortran stores each column contiguously. More generally, for an N-dimensional array, in C the
last dimension is contiguous in memory, while in Fortran the first dimension is contiguous. This
means that for the same area allocated in memory, Fortran and C indices are transposed:

aFm"t'rcm(dla ceey dN) And aC[dN7 ey dl]

where N is the number of dimensions and d; the i dimension.
Remember also that first element through one dimension has index 1 in Fortran, and index 0 in
C. Finally, we can write:

2 END-USER DOCUMENTATION 2

aFortran (i, Jy . k) = aclk —1,...,5 — 1,1 — 1]

This element is the same but accessed from Fortran or from C respectively.

The vars() built-in function With no arguments, displays the dictionaryE] of the current
name area. Thus vars() .keys ()E] is a list of all variables defined in the current name area. With
a variable as argument, displays the attributes list of this variable.

The dir () built-in function With no arguments, displays the whole list of variables, functions
or other objects defined in the current name area. With a variable as argument, displays the list
of attributes but also methods and other objects associated to this variable.

The __doc__ attribute Each Python object (functions, classes, variables,...) provides (if pro-
grammer has filled it) a short documentation which describes its features. You can access it
with commands like print myobject._doc__. You can provide a documentation for your own
objects (functions for example) in the body of their definition as a string surrounded by three
double-quotes:

>>> def myfunc():
""" myfunc’ documentation."""
pass

>>> print myfunc.__doc_

’myfunc’ documentation.

Global/local variables and module name spaces Python has the usual notion of
global and local variables. A variable may be either visible in all the main code (it is global)
or only in the function which defines it (it is local). When a variable is called in a function,
Python searches it in the local name space and if not found, it searches it in the global name space.

When a module is imported, it has its own global and locals name spaces, which it does
not share with the main ones. Thus, if a variable is defined as global in a module, it can only
be accessed as an element of the module. Let us assume we want to import a module named
mymodule which provides an execute() function. This function executes command lines in the
module global name Spaceﬂ

>>> import mymodule

>>> mymodule.execute(’a = 07)
>>> mymodule.a

0

>>> a # is not defined (or visible) in the main name space.
Traceback (most recent call last):

File "<stdin>", line 1, in ?
NameError: name ’a’ is not defined

Note that importing all module objects in the main name space does not give a solution:

!a Python dictionary is an associative array: a set of couples keys + items.
2the .keys() (resp. .values()) method returns the keys (resp. the values) list of any dictionary.
3it may be coded this way: def execute(string): exec(string) in globals()

2 END-USER DOCUMENTATION 3

>>> from mymodule import execute
>>> # ’execute()’ is now a member of the main name space
>>> execute(’a = 07)
>>> a # is not defined...
Traceback (most recent call last):

File "<stdin>", line 1, in 7
NameError: name ’a’ is not defined
>>> execute(’print a’) # but seems defined ’somewhere’...
0
>>> print
__main_
>>> execute(’print

_name__ # Prints the current module name

_name__’) # Prints the module name the
’execute()’ function works in

mymodule

execute () function still works in mymodule (and defines variables as members of it) although
there is no 'mymodule’ module visible in the main name space.

Finally you will have to import the brand new created variable if you want to make it visible
in the main name space:

>>> from mymodule import a
>>> a
0

Note that the two objects a (imported from mymodule) and mymodule.a are the same object (not
a copy):

>>> execute(’b = [0, 0, 0]’)
>>> from mymodule import b

>>> b

[0, 0, 0]

>>> b[0] =1

>>> b # the one imported into ’main’ from ’mymodule’
[1, 0, 0]

>>> execute(’print b’) # the one in ’mymodule’

(1, 0, 0]

2.1.2 NumPy basics

Array handling is provided to Python by the optional package NumPy. NumPy de-
rives from the older module Numeric which documentation is available at http://nume
ric.scipy.org/numpydoc/numdoc.htm. You will have to pay for the NumPy documen-
tatiorﬂ but the Numeric one may be sufficient to begin handling arrays with Python.
You can also find an extensive list of the NumPy functions, methods and attributes at
http://www.scipy.org/Numpy Example List _With Doc .

The type ndarray provided by NumPy module has a large set of attributes and methods which
can help to deal with these objects. This module also brings many useful functions.

4see http://www.tramy.us

2 END-USER DOCUMENTATION 4

>>> from numpy import array, reshape
>>> a = reshape(array(range(1,25)),(2,3,4))
>>> # integers from 1 to 24 rearranged in a 2x3x4 data cube
>>> a
array([[[1, 2, 3, 4],
[5, 6, 7, 81,
[9, 10, 11, 12]],
[[13, 14, 15, 16],
(17, 18, 19, 201,
[21, 22, 23, 24111)
>>> type(a)
<type ’numpy.ndarray’>

Basic array elements access may be summarized as follows:

>>> a[0] # First subarray through first dimension
array([[1, 2, 3, 4],
L5, 6, 7, 8],
[9, 10, 11, 12]11)
>>> a[0] [1] # Second subarray through first dimension of subarray ’a[0]’
array([5, 6, 7, 8])
>>> al0][1][2]
7
>>> al[0,1,2] # Same as above
7
>>> j = (0,1,2)
>>> a[j] # Tuples are valid indices
7

>>> a[:] # All subarrays through first dimension, thus ’a’ itself
array([[[1, 2, 3, 4],

(L5, 6, 7, 8],

[9, 10, 11, 12]],

[[13, 14, 15, 16],

(17, 18, 19, 20],

[21, 22, 23, 2411])

>>> a[0:1] # lower limit is included, upper limit excluded,
thus only al[0]
array([[[1, 2, 3, 4],
(5, 6, 7, 8],
[9, 10, 11, 12]1D)
>>> al:,1:,:2] # All elements through 1st dimension,
all elements except 1st one (0) through 2nd dimension,
1st two elements (0 and 1) through 3rd dimension:
array([[[5, 6],

(9, 1011,
([17, 18],
(21, 22111)

Attributes Attributes come with any numpy.ndarray. Among others we can mention:

e The .shape built-in attribute: is a Python tuple storing the dimensions of the input array.

2 END-USER DOCUMENTATION)

e The .dtype built-in attribute: a numpy.ndarray brings its datatype in a special ob-
ject called dtype, which can be retrieved with the .dtype attribute. Default type is
dtype(’<id’) (standard integer) for integers, and ’<£8’ (double precision) for floats. We
will import different kind of numbers from SIC (different memory size allocated per ele-
ment), so the dtypes will be one of ><£8 (double precision float), ><£4’ (single precision
float), 7<i4’ (integers), or > |81’ (single characters).

e The .itemsize built-in attribute: is the size allocated in memory (in bytes) for each array
element (see dtypes above).

Methods Methods come with any numpy.ndarray. Among others:

e The .flatten() built-in method: returns a flat (rank 1) vector compound with a copy of
all input array elements.

e The .tostring() built-in method: returns a string representation of the data portion of
the array it is applied to. It can be used to concatenate elements of a character (’|S1’)
array.

Functions Functions must be imported from NumPy module. Among others:

e The array() built-in function: returns a numpy.ndarray from a list of elements (or list
of lists,...), from a tuple (or tuple of tuples,...), or even from any valid numpy.ndarray.
The array constructor also takes an optional dtype (see above), an optional savespace
argument, and an optional copy argument (see below).

Try also ones () or zeros() with a tuple containing dimensions as argument to create new
arrays.

e The size() built-in function: displays the number of elements of the input array.

e The rank() built-in function: displays the number of dimensions of the input array (0 =
scalar, 1 = vector, etc).

e The len() built-in function: displays the number of elements of the input array along the
first dimension.

e See also: reshape().

Subarrays and derivates An important feature is that arrays that derive from
numpy .ndarray are not copies: they still point to the memory area of the initial array.

>>> from numpy import zeros
>>> a = zeros((2,3))

>>> a
array([[0, 0, 0],
[0, 0, 011)
>>> b = al[0] # Subarray
>>> Db

array ([0, 0, 0])

2 END-USER DOCUMENTATION 6

>>> ¢ = reshape(a,(6,)) # 1D version of ’a’

>>> ¢

array([0, 0, 0, 0, O, 0])

>>> al0,0] 1

>>> b[1] =

>>> c[2]

>>> a

array([[1, 2, 3],
[0, 0, 011D

w N

>>> b

array([1, 2, 31)

>>> ¢

array([1, 2, 3, 0, 0, 0])

The array constructor (built-in function) array() can take an optional boolean argument
copy which indicates if the above feature applies or not to the derived array:

>>> a = array((0,0,0))

>>> a

array ([0, 0, 0])

>>> b = array(a,copy=True) # A copy: does not share its data with ’a’
>>> ¢ = array(a,copy=False) # Not a copy: shares its data with ’a’

>>> af0] =1
>>> b[1] = 2
>>> c[2] 3
>>> a

array([1, 0, 31)
>>> b

array([0, 2, 0])
>>> ¢

array([1, 0, 31)

2 END-USER DOCUMENTATION 7

2.2 Using Python from SIC
2.2.1 The SIC command PYTHON

If Python and the NumPy module was detected, SIC provides the command PYTHON with various
behaviors depending on what follows (or not) on command line:

e Starting Python: in all cases, the first call to the command starts the Python interpreter
in the background if it was not already launched. This is done only once:

SIC> PYTHON

Python 2.5 (r25:51908, Nov 14 2006, 22:44:28)

[GCC 4.1.1 20061011 (Red Hat 4.1.1-30)] on linux2

Entering interactive session. Type ’Sic()’ to go back to SIC.
>>>

The SIC variables are not yet available at this stage, assuming the user may not need them.
You have to invoke the .get () method (with no arguments) to import them (see section

for details):

>>> pysic.get()

Importing all SIC variables into Python...
. done.

>>>

e Switching to Python: by default, if no argument follows, an interactive session is
launched (see above). It has the same behavior as the standard interactive Python mode:
multiline definition for functions and classes, and command history. To exit both SIC and
Python, type CTRL-D as usual. The exit () function is also available. To go back to SIC,
call the Sic object with Sic().

e Executing a Python script: if the first argument which follows the command PYTHON
is a string ending with the three characters ‘.py’, SIC assumes that you gave it a Python
filename. SIC will look in all the MACRO#DIR: directories it usually looks in for its own
procedures. SIC also solves the logical names if any. If the file is found, it will be executed
by the Python interpreter in the current name space:

SIC> TYPE test.py
print "Hello world!"
a=1

a

print "a value is", a

This line is a comment
for i in xrange(1,4):
print i

if True:

print "True"
else:

print "False"

2 END-USER DOCUMENTATION 8

SIC> PYTHON test.py
Hello world!

a value is 1

1

2

3

True

SIC>

Note that the command a = 1 does not print any output. You have to explicitely request
a print to see any value. After the execution you fall back to the SIC prompt. If the
SIC)VERIFY flag is set to ON, commands are printed before execution:

SIC> SIC VERIFY ON
I-SIC, VERIFY is ON
SIC> PYTHON test.py
>>> print "Hello world!"
Hello world!
>>>a =1
>>> a
>>> print "a value is", a
a value is 1
>>> for i in xrange(1,4):
. print i
1
2
3
>>> if True:

print "True"

. else:

print "False"
True
SIC>

e Passing arguments to Python scripts: You can pass arguments to the Python script
after its name. They will be available in the sys.argv list as usually when you launch
Python scripts from shell:

SIC> TYPE test2.py
import sys
for i in sys.argv:
print i, type(i)
SIC> PYTHON test2.py 1 qwerty "ABCD"
test2.py <type ’str’>
1 <type ’str’>
qgqwerty <type ’str’>
"ABCD" <type ’str’>
SIC>

Arguments are also parsed by SIC before being sent to Python:

2 END-USER DOCUMENTATION 9

SIC> DEFINE DOUBLE A

SIC> LET A 1.234

SIC> py test2.py A "A" A’
test2.py <type ’str’>

A <type ’str’>

"A" <type ’str’>

1.234 <type ’str’>

SIC>

e Parsing Python script arguments: Sic does NOT interpret arguments starting by a
slash as options of the command. This can be useful to simulate a Sic-like calling sequence,
but implemented in Python. The Gildas-Python module sicparse.py can help you to
parse such options in Python:

SIC> type test3.py
import sicparse
parser = sicparse.OptionParser()

Declare 1 known option:
parser.add_option(

"-m", # Short name

"--myopt", # Full name

dest="optval", # Variable name where option value will be stored
nargs=1, # Number of arguments expected

type="float", # Kind of arguments

default=1.23) # Default value if option is absent

Call again add_options to declare more options

Parse:
try:

(options, args) = parser.parse_args()
except:

raise StandardError,"Invalid option"

print "Success"
print "Command arguments: ",args
print "Options: ",options

SIC> python test3.py ABCD

Success

Command arguments: [’ABCD’]

Options: {’optval’: 1.23}

SIC> python test3.py ABCD /myopt 4.56
Success

Command arguments: [’ABCD’]

Options: {’optval’: 4.56}

SIC>

But of course, as in Sic, arguments starting with a slash must be then double-quoted:

2 END-USER DOCUMENTATION 10

SIC> python test3.py /home/me
Usage: test3.py [options]

test3.py: error: no such option: /home/me
Traceback (most recent call last):

File "./test3.py", line 19, in <module>

raise StandardError,"Invalid option"

StandardError: Invalid option
SIC> python test3.py "/home/me"
Success
Command arguments: [’"/home/me"’]
Options: {’optval’: 1.23}

¢ Raising errors in Python scripts: There are typically 3 ways to raise errors in Python
scripts:

1. let Python raise its own errors, e.g.

SIC> type test4d.py
print 1/0
SIC> python test4.py
Traceback (most recent call last):

File "./test4.py", line 1, in <module>

print 1/0

ZeroDivisionError: integer division or modulo by zero
SIC>

2. raise your own Python error, e.g.

SIC> type testb.py

arg = 0
if (arg==0):

raise StandardError, "Argument must not be null"
else:

print 1/arg
SIC> python testb.py
Traceback (most recent call last):
File "./test5.py", line 3, in <module>
raise StandardError, "Argument must not be null"
StandardError: Argument must not be null
SIC>

3. turn ON the error status of the SIC\PYTHON command, such as it behaves correctly
when hand is given back to Sic. For example:

SIC> type test6.py
def main():
try:
print 1/0
except:
print "E-SIC, Some error when printing 1/0"
pysic.sicerror() # Set the SIC\PYTHON command error

2 END-USER DOCUMENTATION 11

return # Leave the function and the script

if __name == "__main__

main()

SIC> py test6.py
E-SIC, Some error when printing 1/0
SIC>

Note that these 3 methods raise an error in Sic, i.e. the flag SIC%ERROR is true on
return, and that procedures will stop in such a case (if ON ERROR is PAUSE).

The last syntax gives the best integration in Sic, because in particular it hides the
Python error traceback. However, this requires 1) to catch the error with a try/except
clause, 2) to tell Sic an occured thanks to the method sicerror(), and 3) to leave
the script right after. This last point can only be achieved by putting the whole code
in a (top) function, from which you can return when required. exit is not satisfying
because it performs too much cleaning, nor raise since a traceback would be back.

e Sending Sic-formatted messages to Sic: the method message() can be used to send
messages to Sic. They will be formatted and filtered by the standard Sic messaging mech-
anism, e.g.:

>>> pysic.message(pysic.seve.i,"F00","Hello world!")
I-FOO, Hello world!

The seve instance contains the usual elements (£, e, w, r, i, d, t, c) which have to
be used to indicate the message severity.

¢ Executing a single-line Python command: if any other character string follows the
PYTHON command, it will be sent to the Python interpreter as a single line command.
Multiline feature can not be used in this case:

SIC> PYTHON print "Hello world!"
Hello world!
SIC>

The command line sent after the PYTHON command is executed by the Python interpreter.
It is also printed after a >>> prompt if the SIC%VERIFY flag is ON:

SIC> SIC VERIFY ON

I-SIC, VERIFY is ON

SIC> PYTHON print "Hello world!"
>>> print "Hello world!"

Hello world!

SIC>

Take care that what you type at SIC prompt after PYTHON command is now case sensitive!
There will be no reformatting, except for single-quoted strings:

SIC> PYTHON print ’Hello world?’
>>> print ’Helloworld?’
Helloworld?

SIC>

Please use double-quotes instead for commands sent by SIC to Python.

2 END-USER DOCUMENTATION 12

2.2.2 Calling Python functions

The Python community has developped a large set of additional modules for many purposes.
Some functions that SIC does not provide can be imported from an external Python module.
User can also define its own functions written with Python.

The numerical functions can be called from SIC formulas. When SIC does not find a function
in its own builtin or user-defined ones, it will have a look in the Python main namespace area
(if Python interpreter is launched!). If one object name matches and is callable, it will call this
Python function with the arguments you provided:

SIC> PYTHON from scipy.special import jn

>>> from scipy.special import jn

SIC> PYTHON print jn.__doc__

>>> print jn.__doc__

y = jn(n,x) returns the Bessel function of integer order n at x.
SIC> DEF REAL A

SIC> A = JN(0,1)

SIC> EXA A

A = 0.7651977 ! Real GLOBAL
SIC>

jxﬂ is the Bessel function, called here at order 0 with x = 1. Always take care to import
(or create) your Python functions in the main namespace. Note that function names are fully
lowercased before trying to match them with Python names.

scipy and its subpackages provide a large set of mathematical functions for scientific computing. See project

webpage for more informations: http://www.scipy.org

2 END-USER DOCUMENTATION 13

2.3

Using SIC from Python

2.3.1 PyGildas modules

Most of the Gildas packages can be directly imported as Python modules:

import pysic
import pygreg
import pyastro
import pyclas#ﬂ
import pyclic

import pymapping

During the import, 3 steps are executed:

SIC (resp. GreQG) is initialized as a background process,

e the Sic object is instantiated into Python _main__ (see subsection [2.3.4),

all SIC variables are imported into Python _main__ (see subsection [2.4).

From this point, you can use the (shared) variables, jump to SIC prompt, and use any of the
methods the module defines (see hereafter).

2.3.2 Special commands

A set of special functions has been written for user convenience. They are provided as methods
of the modules pysic, pygreg, ... if SIC is launched from Python, and also in every case as
methods of an instance called Sic in the Python _main__ (see subsection [2.3.4)):

comm(string): takes a string as argument and sends it to the SIC interpreter, which will
execute it. If SIC fails to interpret the command, or if the command itself returns an error,
comm will raise an error in Pythonﬂ As usual in Python, it can be catched with the try
and except couple of directives.

setgdict(dictionary): define input dictionary as the area where Gildas variables will
be imported, and automatically import these into the input dictionary. If a dictionary was
already defined, it is first cleaned before filling the new one given in input.

A call to this function is required if user wants to access the imported variables. This
avoids polluting name areas because of uncontroled default. In interactive mode, the most
common usage is to use the current name area, e.g. setgdict(globals()); print pi.
In script mode, prefer using a custom dictionary, e.g. d = dict(); setgdict(d); print
d[’pi’], or even better the gdict container (see subsection .

Sthe current Class was called Class90 before Feb 08
"Please note that the @ command in SIC will not raise any error even if a command fails in the procedure
executed. User is expected to correct it on-the-fly, or to tune the error handling with the ON ERROR command in

SIC.

2 END-USER DOCUMENTATION 14

e get([string[,integer[,boolean]]]): Takes a string as argument, which must be a
valid SIC name (in SIC format, thus not case sensitive). Variable can be a scalar, an array,
a structure, an header, a table, or an image. The second argument may be the level of the
variable to be imported (0 = global, 1 = 1-local, and so on). It defaults to the current exe-
cution level. A third argument indicates if the function should be verbose (True, default),
or not (False).

‘get ()’ creates a SicVar or a SicStructure instance sharing its data with the correspond-
ing variable in SIC. Its name is the original SIC name, but lowercased, and converted in
respect with the Python name conventions (see table . ’$’ can not appear in Python
names: it is converted to ‘. ‘%’ (structures in SIC) has a special treatment and is con-
verted to ‘.’ (see subsection . All structures elements are linked to the corresponding
SicStructure as SicVar (or SicStructure) attributes, and all header components of the
images are linked to the corresponding SicVar as SicVar attributes.

‘get ()’ fails to import variable into Python when its converted name is a Python reserved
keyword (such as ‘def’, ‘del’, ‘import’, ‘as’, ...), or a built-in function name (such as ‘type’,
‘range’, ‘min’, ‘max’, ...).

With no argument, ‘get ()’ imports all SIC variables by iteratively calling ‘get ()’ itself
with their names as argument.

Table 1: SIC to Python names conversion

SIC Python

"ABC" "abe"
"ABC$DEF" "abc_def"
"ABCY,DEF" "abc.def"

e exa([vari[,var2[,...]]1]): with one or more SicVar or SicStructure instances as
argument, displays one line per instance with the corresponding SIC variable name, details
on its type, dimensions,... With no argument, displays this line for the full list of the SIC
variables. Example:

>>> exa(pi)
PI is a REAL*8, OD (GLOBAL,R0) -> pi

e define(string[,boolean]): takes one string as argument and defines one or more vari-
ables in both SIC and Python. First keyword must be the type (one of real, double,
integer, character or structure, or a non-ambiguous truncated form of them), followed
by one or more valid variable-creator SIC name (e.g. ‘A’, ‘Bx8’, ‘C[2]’, ‘D%E’ or even
‘F%G*8[2,3]’). All variables created this way are read-and-write. By default they are local
to the current execution level, but you can provide a second optional argument set to True
to make the variables global. For images, give the command line you would give to the SIC
interpreter, but without the define keyword. exa() is finally called on the newly created
instance(s). Examples:

2 END-USER DOCUMENTATION 15

>>> define(’real a’)

A is a REAL*4, OD (GLOBAL,RW) -> a
>>> define(’double b c[2] d[2,3]’)

B is a REAL*8, OD (GLOBAL,RW) -> b

C is a REAL*8, 1D (2x0x0x0) (GLOBAL,RW) -> ¢

D is a REAL*8, 2D (2x3x0x0) (GLOBAL,RW) -> d
>>> define(’structure e’)

E is a <structure>, 0D (GLOBAL,RW) -> e
>>> define(’character ef elgx6[2,3]’)

E%F is a CHARACTER*1, OD (GLOBAL,RW) -> e.f
E%G is a CHARACTER*6, 2D (2x3x0x0) (GLOBAL,RW) -> e.g
>>> define(’image h centaurus.gdf read’)

H is a (image)REAL*4, 2D (512x512x1x1) (GLOBAL,R0) -> h

e delete(vari[,var2([,...]]): takes one or more SicVar or SicStructure instances as
arguments. Tries to delete the corresponding variable in SIC. On success, also deletes the
input instance.

e getlogical(string): takes one Python string as argument. The method translates a
SIC logical and returns it as a Python string. Input name is case insensitive. An empty
string is returned if no such SIC logical exists (no error is raised).

2.3.3 The gdict container

Modules have a special attribute named gdict (actually, a class instance) from which all Gildas
variables can be easily retrieved and defined:

>>> import pysic

>>> pysic.get()

Importing all SIC variables into Python...
. done.

>>> g = pysic.gdict

>>> g

Container for imported Gildas variables. Variables are accessed as
attributes of this object.

>>> dir(g) # List of all imported variables

[’__builtins__’, ’debug_recursive’, ’gildas_node’, ’linedb’, ’no’, ’pi’,

’run_window’, ’sic’, ’type_dble’, ’type_inte’, ’type_logi’, ’type_long’,

’type_real’, ’yes’]

>>> g.pi # Get Gildas variable PI

3.14159265359

>>> g.a = (1,2,3) # Set a new Gildas variable A

A is a INTEGER*4, 1D (3x0x0x0) (GLOBAL,RW) -> a
>>> pysic.comm(’exa a’)
A is an integer Array of dimensions 3

1 2 3

Whatever the name area has been defined by user with setgdict, any gdict instance will allways
find the Gildas dictionaryﬂ The variable handling can be found easier than the dictionary
equivalent d[’pi’].

8Technically, gdict instances have no attributes. They only have the methods __getattr__ and __setattr__
which dynamically retrieve or define the SicVar instances.

2 END-USER DOCUMENTATION 16

2.3.4 The Sic object in Python _main__

This object is obsolescent. Whatever is the way you launched SIC and Python through the
Pygildas features, an object named Sic will be created at initialization time in the Python
_main__. It is used for these purposes:

e It stores (as attributes) aliases of commands documented at subsection If user called
Python from SIC, he can only access them from the Sic object. If user called Gildas from
Python (e.g. by importing pysic or pygreg), he can either call these commands with the
pysic/pygreg or Sic prefix. Calling Sic() switches to the SIC prompt.

e It stores as an attribute the array of 10 instances named localspaces and used to save

local variables (see subsection [2.5).

e It stores a logical flag named warnings which activate/deactivate warnings (printed when
importing a variable failed for example). It is set to True by default, but user can switch
it to False.

2 END-USER DOCUMENTATION 17

2.4 Importing SIC objects

Importing SIC objects (more precisely making them wvisible from Python) is quite easy and all
the trick is based on the NumPy package and its ndarray type object. All SIC variables are
imported through instances of two special classes: SicVar and SicStructure which implements
numpy .ndarray features.

2.4.1 SIC arrays
SIC arrays are imported as SicVar instances. Let us deﬁneﬂ a 1D array A in SIC:

>>> Sic.setgdict(globals())

Importing all SIC variables into Python...
. done.

>>> Sic.comm(’DEFINE INTEGER A[3]’)

Defining a variable in SIC automatically imports it in Python _main__. Here A is imported
into a SicVar instance with name ’a’:

>>> a

[0 0 0]

>>> print a
<SicVar instance>
array([0, 0, 0])
>>> type(a)

<type ’instance’>
>>> print a.__doc__
A SicVar instance.

All of the numpy.ndarray attributes, methods or functions should apply to the SicVar in-
stances, because almost all these instances behaviors are redirected to their numpy.ndarray
component. Their elements can be accessed with standard NumPy indexing syntax:

>>> al0]

0

>>> a[1:] # Elements 1 and subsequents
[0 0]

>>> a += 1 # Adds 1 to all elements
>>> a

[11 1]

>>> al[:] = 0 # Sets all elements to O
>>> a

[0 0 0]

>>> len(a) # Length

3

>>> a.shape

@3,

Remember that data pointed to by SicVar instances is not a copy: if you modify it in Python
it will be modified in SIC:

9the comm() method of the Sic object or the pysic, pygreg, ... modules (depending of the calling method)
sends its string argument as a command line to SIC. See subsection for all the usefull methods.

2 END-USER DOCUMENTATION 18

>>> al0] =1

>>> a

[1 0 0]

>>> Sic.comm(’EXA A’)

A is an integer Array of dimensions 3
1 0 0

Remember also that derived arrays share their data with the initial array:

>>> b = al[0:2] # First two elements (upper limit is excluded)
>>> print b.__doc__

A SicVar instance.

>>> b

[1 0]

>>> Db += 1 # Adds 1 to all elements

>>> b

[2 1]

>>> a

[2 1 0]

Note that b, as a derived array, is itself a SicVar instance, but is only visible in Python.
And remember the different memory arrangement between SIC (Fortran) and C (Python) for
multidimensionnal arrays (see subsection [2.1.1)):

>>> Sic.comm(’DEFINE INTEGER C[2,3,4]°)
>>> c.shape

4, 3, 2)

>>> ¢[0,0,0] =1 # First element

>>> ¢[3,2,1] = 2 # Last element

>>> Sic.comm(’EXAMINE C’)

C is an integer Array of dimensions 2 3 4
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 2

2.4.2 SIC scalars

Particular numpy.ndarray’s which have no (0) dimension have a special treatment: they still
have numpy.ndarray type, but their representation and handling is similar to standard Python
scalars. SIC scalars are imported in Python as numpy.ndarray scalars through SicVar instances:

>>> Sic.comm(’DEF REAL D’)
>>> d

0.0

>>> print d.__doc

A SicVar instance.

You have to take care that you cannot modify scalars (and, actually, any SicVar or
SicStructure instance) with commands such as d = 1, because this unbounds d to its cor-
responding SicVar instance (which is lost and deleted if no other variable uses it), and bounds
it to integer 1. If it happens, you can get(’D’) again: SicVar instance is recreated and all the
previous changes will not be lost because D have not been deleted in SIC.

2 END-USER DOCUMENTATION 19

>>> Sic.comm(’LET D 1.7)

>>> d

1.0

>>>d = 2. # ooops... ’d’ instance is lost!
>>> type(d)

<type ’float’> # ’d’ is bound to a standard float,
>>> Sic.comm(’EXA D’) # but ’D’ remains unchanged in SIC.
D = 1.000000 ! Real GLOBAL
>>> Sic.get(’D’) # Reincarnates d.

>>> d

1.0

Thus, to modify scalars from Python, you have to access its data through its unique element:

>>> 4[0] = 2.

>>> d

2.0

>>> print d.__doc
A SicVar instance.

2.4.3 SIC structures

SIC structures are imported in Python into instances of the special class named SicStructure:

>>> Sic.comm(’DEFINE STRUCTURE E’)
>>> e
<pgutils.SicStructure instance at Oxb7f00bcc>

SIC structure elements are stored in attributes of SicStructure instances, and these at-
tributes are themselves SicVar instances. Call the print statement to print all (and only)
SicVar (or SicStructure) attributes, and some details on them.

>>> Sic.comm(’DEFINE INTEGER E%A’)

>>> Sic.comm(’DEFINE REAL EJB[2]’)

>>> Sic.comm(’DEFINE DOUBLE EJC[2,3]’)

>>> e

<sicutils.SicStructure instance at 0xb7f009cc>
>>> print e # Detailed printing

<SicStructure instance>

a=20 INTEGER*4 OD
c=1[[0. 0.1C0. 0. [o0. 0.]] REAL*8 2D (2x3x0x0)
b=1[0. 0.] REAL*4 1D (2x0x0x0)

>>> print e.c # ’c’ attribute is a SicVar instance
<SicVar instance>
array([[0., 0.1,

[o0., 0.1,

Lo., 0.1

Nested structures can be recursively imported:

2 END-USER DOCUMENTATION

>>> Sic.comm(’DEFINE STRUCTURE EY%D’)
>>> Sic.comm(’DEFINE INTEGER EY%D%A’)
>>> print e

<SicStructure instance>

a=0 INTEGER*4 OD
c=[[0. 0. [o0. 0. [0. 0.]] REAL*8 2D (2x3x0x0)
b=1_[0. 0.] REAL*4 1D (2x0x0x0)
d = <SicStructure>

>>> print e.d
<SicStructure instance>
a=20 INTEGER*4 OD

20

SicStructure instances can be added new attributes and these attributes are automatically

instantiated in the SIC structurdk

>>> e.e = 1

EVE is a INTEGER*4, OD (GLOBAL,RW) -> e.e
>>> Sic.comm(’EXA E%E’)
E%E = 1 ! Integer GLOBAL
>>>
>>> e.f = (1,2,3)
EYF is a INTEGER*4, 1D (3x0x0x0) (GLOBAL,RW) -> e.f
>>> Sic.comm(’EXA E%F’)
EJF is an integer Array of dimensions 3
1 2 3
>>>

>>> import numpy
>>> e.g = numpy.zeros((3,3)) # Create a 3x3 real numpy array

E%G is a REAL*8, 2D (3x3x0x0) (GLOBAL,RW) -> e.g

>>> Sic.comm(’EXA EG’)

E%G is a double precision Array of dimensions 3 3
0.00000000000000000 0.00000000000000000 0.00000000000000000
0.00000000000000000 0.00000000000000000 0.00000000000000000
0.00000000000000000 0.00000000000000000 0.00000000000000000

2.4.4 SIC images

Standalone headers or tables are imported like any other structure or array respectively. SIC
images, which combines a header with a table, are also imported in SicVar instances. Thus, image
elements are accessed through standard indexing to the instance itself, and header components

through attributes of this instance:

>>> Sic.comm(’DEFINE IMAGE F centaurus2.gdf WRITE’)

PygildasWarning: ’max’ is a ndarray attribute, could not overwrite it.
PygildasWarning: ’min’ is a ndarray attribute, could not overwrite it.
PygildasWarning: ’ndim’ is a ndarray attribute, could not overwrite it.

You have to take care that numpy.ndarray’s provide a large set of attributes and methods, and
some of them have name identicals to headers components: they are not imported and only a

warning is printed.

10if possible. The destination value must be caste-able by the numpy.array method into a numpy.ndarray

2 END-USER DOCUMENTATION 21

>>> f

[[0.01676085 0.0141144 0.0194073 0.0141144 0.0105858]
[0.02911095 0.01852515 0.0141144 0.01323225 0.0123501]
[0.09968295 0.0264645 0. 0.0141144 0.01499655]
[0.035286 0.0141144 0.01676085 0.01499655 0.01323225]
[0.0229359 0.017643 0.0123501 0.0158787 0.0158787 1]

>>> £[0,0]

0.0167608503252

>>> print f

<SicVar instance>

array([[0.01676085, 0.0141144 , 0.0194073 , 0.0141144 , 0.0105858],
[0.02911095, 0.01852515, 0.0141144 , 0.01323225, 0.0123501],
[0.09968295, 0.0264645 , O. , 0.0141144 , 0.01499655],
[0.035286 , 0.0141144 , 0.01676085, 0.01499655, 0.01323225],
[0.0229359 , 0.017643 , 0.0123501 , 0.0158787 , 0.0158787 11, dtype=float32)
rms = 0.0 REAL*4 OD
major = 0.0 REAL*4 OD
blan =8 INTEGER*4 0D
ptype =3 INTEGER*4 OD
system = ’EQUATORIAL ° CHARACTER*12 OD

(and so on for all header elements)
>>> print f.rms # ’rms’ is an attribute of ’f’, and a SicVar itself.
<SicVar instance>
array(0.0, dtype=float32)

2.4.5 Handling character strings

Character strings are imported in a SicVar instance as any other SIC variable:

>>> Sic.comm(’DEFINE CHARACTER G*8’)
>>> Sic.comm(’LET G "ABCDEFGH"’)
>>> g
> ABCDEFGH’
>>> print g
<SicVar instance>
array (’ABCDEFGH’,
dtype=’1S87)
>>> len(g)
8

Remember that numpy.ndarray’s provide the .tostring() method which returns a Python
string resulting of the concatenation of elements of a character array (’|S*’ dtypes). This can be
useful to handle SIC strings in Python. Nevertheless string concatenation and multiplication is
already implemented in SicVar instances:

>>> h = ’xyz’ + g + ’ijk’
>>> h
’xyzABCDEFGHi jk’

>>> type(h)

<type ’str’> # A standard Python string
>>> h = 2%g

>>> h

> ABCDEFGHABCDEFGH’

2 END-USER DOCUMENTATION 22

These SicVar strings can also be easily modiﬁed[ﬂ

>>> g[0] = "qwerty"

>>> g

’qwerty ’ # note ’g’ has been automatically blank filled
>>> Sic.comm(’EXA G’)

G = gwerty ! Character* 8 GLOBAL

"ywhereas real Python strings are immautable objects: you can not modify them inplace and have to make copies
for such handlings.

2 END-USER DOCUMENTATION 23

2.5 Object status in SIC:

Read-only or read-and-write? Read or write status is preserved when variables are imported
in Python, and trying to modify their values will raise an error:

>>> pi
3.14159265359
>>> print pi.__doc__ # pi was imported from SIC
A SicVar instance.
>>> pi[0] = 0
Traceback (most recent call last):

File "<STDIN>", line 1, in <module>

File "/home/bardeau/gildas/gildas-src-dev/pc-fedora6-ifort/kernel/
python/pgutils.py", line 204, in __setitem__

raise PygildasValueError, "Variable is read-only in SIC."

pgutils.PygildasValueError: Variable is read-only in SIC.

The protection of SicVar intances against deletion or re-definition (ie using pi = 1 instead
of pi[0] = 1) is not implemented. See considerations in subsection [2.4.2]

Global or local variable (in the SIC sense)? SicVar and SicStructure instances have a
__siclevel__ attribute which is an integer set to the level of the corresponding variable in SIC
(0 for global, 1 for first local level, and so on).

When SIC defines any variable, it automatically imports it in the Python _main__ name
spacefﬂ When this variable is SIC-local (when executing procedures for example), importing it
in Python may overwrite a lower level instance which has the same name. To prevent this, the
Sic object in Python __main__ provides an array of 10 instances (one per level) which are used to
temporarily store object which would have been erased. This array is named localspaces and
objects are saved as attributes of its 10 elements. Consider these SIC procedures:

SIC> type localtestl.sic
define integer a

let a 123

pause

@localtest2.sic

SIC> type localtest2.sic
define real a[3]

pause

They will define local variables named ‘A’ at different local levels. Let’s define a global ‘A’ variable
and execute these procedures:

12This is subject to changes as long as the Gildas-Python binding is in a beta development status.

2 END-USER DOCUMENTATION 24

SIC> define char ax8

SIC> let a "qwertyui"

SIC> Q@localtestl.sic

SIC_2> define integer a

SIC_2> let a 123

SIC_2> pause

SIC_3> python

Entering interactive session. Type ’Sic()’ to go back to SIC.

>>> a

123

>>> a.__siclevel__

1

>>> Sic.localspaces[0].a

’qwertyui’

>>> Sic.localspaces[0].a.__siclevel__
0

‘a’ object currently in Python _main__ is the level-1 SIC object. The SIC-global ‘A’ variable has
been saved as an attribute of the Sic.localspaces[0] element.
Let’s go deeper:

SIC_3> continue

SIC_2> Q@localtest2.sic

SIC_3> define real al[3]

SIC_3> pause

SIC_4> python

Entering interactive session. Type ’Sic()’ to go back to SIC.

>>> a

[0. 0. 0.]
>>> a.__siclevel__
2

>>> vars(Sic.localspaces[0])

{’a’: ’qwertyui’}

>>> vars(Sic.localspaces[1])

{’a’: 123}
Now we find the level-2 object in the Python _main _, and the 2 lower-level variables with the
same name are saved in the Sic.localspaces array. At any stage, user can access its current-
level variables in the Python __main__, but also any lower level ones through the Sic.localspaces
array.
Let’s end procedures:

SIC_4> continue

SIC> python

Entering interactive session. Type ’Sic()’ to go back to SIC.
>>> a

’qwertyui’

>>> vars(Sic.localspaces[0])

{3+

>>> vars(Sic.localspaces[1])

{3

In an automatic cascading mechanism, the lower-level variables are moved back to the Python
_main__ when the current level one is deleted. The Sic.localspaces array is cleaned at the
same time so their is no double reference for any object. Thus at the end of the procedures, the

2 END-USER DOCUMENTATION 25

SIC-global variables are back in the Python __main__, and the Sic.localspaces array has no
more attributes.

Remember that an object is saved in the Sic.localspaces array if and only if an upper
level variable is defined with the same name. Thus, at any time, the Python __main__ may
contain objects from different levels. User does not have to care about the saving and unsaving
mechanism: all is automatic and goes back as it was after procedure execution. He only has to
know that he can access any lower level variable in the Sic.localspaces array.

3 PROGRAMMER DOCUMENTATION 26

3 Programmer documentation

3.1 Installing PyGILDAS

3.1.1 Prerequisites

Before compiling, Gildas administrative scripts{f] try to detect your Python installation. It
retrieves the version number of the python executable visible from your shell (python -V) and
searches for associated libpythonuversion.* and Python.h. The latter header file is not always
shipped with default system installations, but it is required to compile the Python binding for
Gildas. If not found, you should consider to install the Python development package for your
installation.

WARNING: if your Python is the one installed on your system, try only to install the
development package for it. NEVER try to upgrade it! Python is deeply used in modern Linux
systems and you might break it definitely.

Additionally, Gildas-Python binding rely on the extended array-support module NumPy. It
must be importable in Python in order to activate the compilation of the binding.

Versions: PyGILDAS is known to work with Python from versions 2.6.* up to 3.4.*, and with
NumPy version 1.4.*% to 1.7.%.

3.1.2 How to build your own Python version

You can easily build your own Python binaries and libraries by following the steps below:
1. Retrieve the sources from the official website: http://www.python.org/download/

2. Unpack, compile and install Python (any version, here with Python 2.7):

cd <compilation-directory>

tar jvzf Python-2.7.tar.bz2

cd Python-2.7

./configure --enable-shared [--prefix=/your/custom/installation/path]
make

make test

make install

The --enable-shared option ensures to build both static and dynamic Python libraries.
This option is mandatory for a correct behaviour of the Gildas-Python binding. The
--prefix option allows you to install Python in a custom location (instead of /usr/local).
This is useful in particular if you do not have administrative priviledges. Finally you should
refer to section if you want to enable the command line history in the Gildas-Python
binding.

3. Make your new Python available. Fill the binary and library location in the corresponding
environment variables:

export PATH=/your/custom/installation/path/bin:$PATH
export LD_LIBRARY_PATH=/your/custom/installation/path/lib:$LD_LIBRARY_PATH

13i.e. when executing source admin/gildas-env.sh

3 PROGRAMMER DOCUMENTATION 27

You can make your custom Python the permanent default for yourself (i.e. overriding
the system Python), or you can make it a transient default to be used only for Gildas
compilation. This depends on your needs, see post-compilation instructions in section

4. Check your installation:

which python
python -V
python -c "import sqlite3"

sqlite3 Python module is optional, needed only for the extension named Weeds for Class.
If import sqlite3 fails, install (or ask your system administrator) sqlite3 headers on your
system (system package providing sqlite3.h i.e. sqlite3-devel), and restart from step 2.

Then you are ready to install NumPy (see below).

3.1.3 Python module readline for command history

The Python interpreter launched from SIC provides the command line history if and only if
the Python module readline is imported. This is done automatically when the interpreter is
launched. If this module can not be imported, an ImportError will be raised and you will not
have the command history at the Python prompt.

The readline module is a Python builtin module. In most case it has been compiled and
installed during your Python installation. Nevertheless, in case of a new compilation and instal-
lation of Python, it may not be available. You can check this by trying to import it in a standard
Python session:

>>> import readline

If an ImportError raises, here is what you (or your system administrator) have to do. The
basic idea is that the readline Python module is compiled from a readline.c in Python source.
Your system must provide the libraries libreadline.a and libtermcap.a to compile it success-
fully.

1. Check the config.1log file (the output of the ./configure command) in the directory used
to compile Python. Search for readline occurences and look for errors that did not allow
to find readline on your system.

2. It may appear that some symbols where undefined. They are provided by the two system
libraries 1ibreadline.a and libtermcap.a. Check if you have them, install them if not.
Launch ./configure command again.

3. If the readline Python module still not compiles, try fo force ./configure to link against
one or two of the above system libraries:

./configure --with-libs=’-ltermcap’

The module should now compile. make and make install your Python with its new mod-
ule.

3 PROGRAMMER DOCUMENTATION 28

3.1.4 Install NumPy module for Python

NumPy is mandatory for the Gildas-Python binding. Building and installing it requires some
specific options and setting a correct environment. You can follow these steps:

1. Download NumPy from: http://www.scipy.org/Download

2. Unpack and compile NumPy. You can build NumPy either for the Python installed on your
system or for a custom one: the build will be done for the Python which is seen from your
shell (which python).

cd <compilation-directory>

tar xvzf numpy-1.3.0.tar.gz

cd numpy-1.3.0

python setup.py build --fcompiler=<compiler>

Usually gnu95 is the correct argument for the ——fcompiler option. Else (or if your want
to know more), you should consider the following point:

The two most popular open source fortran compilers are g77 and gfortran.
Unfortunately, they are not ABI compatible, which means that concretely
you should avoid mixing 1libraries built with one with another. In
particular, if your blas/lapack/atlas is built with g77, you *must* use
g77 when building numpy and scipy; on the contrary, if your atlas is
built with gfortran, you *must* build numpy/scipy with gfortran.

* Choosing the fortran compiler
- To build with g77:
python setup.py build --fcompiler=gnu
- To build with gfortran:
python setup.py build --fcompiler=gnu95

* How to check the ABI of blas/lapack/atlas?

One relatively simple and reliable way to check for the compiler wused
to build a library is to use 1ldd on the 1library. If 1libg2c.so is a
dependency, this means that g77 has been used. If Ilibgfortran.so is a
dependency, gfortran has been used. If both are dependencies, this means
both have been used, which is almost always a very bad idea.

In other words, for standard users, NumPy has a linear algebra module (1inalg) which is
linked with the system’s blas/lapack/atlas libraries. This implies that the Fortran sources
of NumPy must be compiled with the same compiler which was used for the libraries. Check
e.g. with 1dd /usr/1ib(64)/lapack.so which compiler you will have to use.

3. Install NumPy:
python setup.py install [--prefix=/some/custom/installation/prefix]

The installation prefix (--prefix) is required only if you want to install NumPy in a location
different from your Python installation directory (e.g. you are using the default Python

3 PROGRAMMER DOCUMENTATION 29

executable provided by your system but you do not have root permissions). In this case
(only), you will have to fill the $PYTHONPATH environment variable to indicate where Python
can find NumPy.

In the other cases, Python will install the module into its own installation directory, which
is fine in particular when you are using a custom installation of Python. In this case you
will also not have to augment the $PYTHONPATH since the module is installed in a standard
location known by Python.

4. Check the installation. Launch Python and type:

import numpy
numpy
numpy.__version__

You should recognize the installation path and the correct NumPy version.

3.1.5 Install scipy module for Python (optional)

The module named scipy (Scientific Python) is not necessary for the Gildas-Python binding,
but it provides useful functionalities you may want. The build and installation process is exactly
the same as for NumPy:

1. Download scipy from: http://www.scipy.org/Download

2. Unpack and compile scipy:

cd <compilation-directory>

tar xvzf scipy-0.7.1.tar.gz

cd scipy-0.7.1

python setup.py build --fcompiler=<compiler>

3. Install:

python setup.py install [--prefix=/some/custom/installation/prefix]

If you provide a custom installation path (--prefix), use the same as for NumPy: you will
not have to augment again the $PYTHONPATH for this second module.

4. Check the installation:

import scipy

scipy

scipy.__version__

from scipy.special import jn

(the last line tries to import the Bessel functions named jn).

3 PROGRAMMER DOCUMENTATION 30

3.1.6 Compiling Gildas with your custom Python (if any)

If you compiled and installed a custom version of Python and the needed modules, then you can
run the usual Gildas administrative scripts:

cd <installation-directory>

tar xvzf gildas-src-jull4.tgz

cd gildas-src-julld

source admin/gildas-env.sh [-c <compiler>]

read carefully the messages (in particular those for Python)
make

make install

read the last instructions

If you followed correctly the installation of your custom Python and the compilation of Gildas,
Gildas is now binded to your custom Python libraries. You have then 2 possibilities:

e if you use Python inside Gildas (i.e. SIC\PYTHON commands), you can safely revert
the python command to its original state. Gildas will use your custom Python libraries,
including its specific syntax and rules.

e if you use the Gildas-Python modules (e.g. pygreg, pyclass) in Python, then you must
import them from your custom Python executable. Either you keep it permanently in your
$PATH, either you call it explictly by a custom name (e.g. python34) before importing the
modules. Here also this means you have to use the correct syntax and rules.

3.2 How SIC variables are imported
3.2.1 Comments on the strategy

Concerning variables handling from both SIC and Python, the first priority was to manage the
same data in memory from the two processes, e.g. a modification of a variable in one process
should be instantaneously visible in the other with no particular resynchronization.

Another consideration is that Python does not natively handle multi-dimensionnal arrays.
This feature can be easily added, but we need the NumPy package.

It appeared quite naturally that the solution was to use the PyArray_SimpleNewFromData ()
function of the NumPy C-API: it can construct a numpy.ndarray from the memory address of an
array, its dimensions and its datatype.

With this feature the strategy can be summarized as follow:

e NumPy freezes its array definition (attributes, size in memory and so on) at compilation
time. We can not add to it more interesting features, especially new attributes or write
protection for read-only variables.

e an overlay had to be created with one purpose: defining a set of features like

— the ability to define attributes to variables,
— the protection of read-only variables,

— a special treatment for character string variables (concatenation),

3 PROGRAMMER DOCUMENTATION 31

and all this must keep unmodified all the numpy . ndarray features (indexing, array handling,
special functions and attributes, and so on)

e this overlay was created as a Python class named SicVar. It has three attributes: a
string named __sicname__, which is the SIC name of the variable, a numpy .ndarray named
__sicdata__, which shares its data with the SIC variable, and its SIC-level (global or local)
stored as an integer named __siclevel__. All numpy.ndarray-like requests on a SicVar are
redirected to the __sicdata__ attribute: with this, SicVar instances behaves like any other
numpy .ndarray.

3.2.2 The SicVar class

SicVar instances should be automatically initialized with the get () function. When importing a
variable, get () calls the instance creator SicVar () with three arguments: SIC variable name (as
a Python string), its level (as an integer), and memory address of its descriptor (Python integer).
It is the own responsibility of the get () function to assign this instance to the correct Python
variable name.

During the initialization, SicVar() defines three attributes to the instance: __sicname__,
_siclevel _, and __sicdata__. By convention the ’__’ delimiters denote objects that are hidden
to the user, but still accessible. __sicname__and __siclevel__ are a Python string and an integer,
and are used to keep a trace of what the original SIC variable is. __sicdata__is a numpy.ndarray
initialized with the informations provided by the descriptor (data address, dimensions, type,...).

>>> Sic.define(’real a’)

A is a REAL*4, OD (RW) -> a
>>> vars(a) # vars() displays attributes names and values
{’__sicdata__’: array(0.0, dtype=float32), ’__sicname__’: ’A’, ’__siclevel__’: 0}

>>> type(a.__sicdata__)

<type ’numpy.ndarray’> # A NumPy array
>>> type(a.__sicname__)

<type ’str’> # A Python string

>>> type(a.__siclevel__)

<type ’int’> # A Python integer

SicVar instances are used to import SIC standard variables (scalars or arrays). Due to its
class type, it can also accept new attributes, and thus be used to import images (for example in
an instance named ima). In this case, the image (the array component) is imported through the
__sicdata__ attribute (ima.__sicdata__), and can be directly accessed from ima (ima[0,0]).
Header variables are imported into other attributes (ima.naxisl, ima.naxis2,...), provided
they do not attempt to overwrite a numpy .ndarray attribute or method. As any other imported
SIC variables, these header attributes are themselves SicVar instances. See subsection for
details and example on importing SIC images.

All attributes of a SicVar instance are write-protected against deletion or overwriting. This
is a first importance for __sicdata__, because deleting it would be dramatic. Remember that the
command a.__sicdata__ = 0 do not modify its content but bounds it to the 0 integer, loosing
data and all information about the corresponding SIC variable. But end-user should never have
to deal with the __sicdata__ attribute, and have to work on the instance itself instead (for

3 PROGRAMMER DOCUMENTATION 32

example a[0] = 0).
These warnings also apply to images attributes: do not try ima.naxisl = 0 but ima.naxis1[0]
= 0 instead.

SicVar instances come with a set of methods and attributes, for one part inherited from the
numpy .ndarray type, and for the other part (re)defined at instance initialization. For example
the addition (__add__ and __radd_) is redefined to add numbers or concatenate character strings.

>>> dir(a) # All attributes and methods.

[’__add__’, ’__copy__’, ’__deepcopy__’, ’__delattr__’, ’__div__’,
’__doc__’, ’__eq__’, ’__ge__’, ’__getattr__’, ’__getitem__’,
’__gt__’, ’__iadd__’, ’__idiv__’, ’__imul__’, ’__init__’, ’__int__’,
’__isub__’, ’__le__’, ’__len__’, ’__1t__’, ’__module__’, ’__mul__’,
’__ne__’, ’__nonzero__’, ’__radd__’, ’__rdiv__’, ’__repr__’,

> __rmul__’, ’__rsub__’, ’__setattr__’, ’__setitem__’, ’__sicdata__’,
’__sicname__’, ’__str__’, ’__sub__’, ’astype’, ’byteswapped’,
’copy’, ’iscontiguous’, ’itemsize’, ’resize’, ’savespace’,
’spacesaver’, ’tolist’, ’toscalar’, ’tostring’, ’typecode’]

3.2.3 The SicStructure class

The only purpose of the SicStructure instances is to be objects that accept user-defined
attributes (as for SIC structures actually). The definition of the SicStructure class is rather
simple. It is instantiated by the SicStructure() creator with the SIC structure name and level
as only arguments, which are stored in its __sicname__ and __siclevel__ attributes.

This empty instance in then filled by the get () function: it loops through all SIC variable
dictionary and searches for all names which begin with the structure name. For each valid
variable it get()’s it as a SicVar attribute of the SicStructure instance. SicStructures
support nested structures, as user or program can define any kind of attributes (SicVar,
SicStructure, or even standard Python objects).

For wuser convenience, the __str__() method (called by print myinstance or
str(myinstance)) of the SicStructure class is redefined to print all (and only) SicVar
and SicStructure attributes, with some details on them.

3 PROGRAMMER DOCUMENTATION 33

3.3 Array elements types

As mentionned earlier (see subsection , numpy .ndarray elements can be of different
kind, precision, and thus memory size. This is reflected through the .dtype attribute of any
numpy.ndarray. By default, integer elements are created with the '<i4’ datatype (standard
integer), and floats with the ’<£8” one (double precision float). Nevertheless, not all SIC elements
follows these types. Attention have been paid to import SIC data into the correct type (see

table [2).

Table 2: OBSOLETE TABLE. SEE NUMPY DOCUMENTATION. SIC to Numeric type con-
version (for a 32-bit architecture)

SIC type Numeric typecode # of bytes

INTEGER*4 ’i? sizeof(int) = 4
REAL*4 1f) sizeof (float) = 4
REAL*8 ’q’ sizeof (double) = 8
LOGICAL*4 ’i? sizeof(int) = 4
CHARACTER ’¢? sizeof (char) = 1

Mixing arrays in Python formulas with element size different from the default Python behavior
is not problematic. NumPy deals with all these types and applies coercion to the adequate type,
and all is completely transparent for the user.

4 PYTHON 3K 34

4 Python 3K

As of mid-october 2014, the Gildas-Python binding supports Python 3. This is implies more or
less transparent changes depending on how far you are involved in this topic.

4.1 References

Before switching to Python 3K, you might want to have a closer look to what this implies. You
may find the following documents helpful:

e Python 2 or Python 37 https://wiki.python.org/moin/Python2orPython3
e What’s new in Python 3K: http://docs.python.org/py3k/whatsnew/3.0.html
e Porting to Python 3: https://wiki.python.org/moin/PortingPythonToPy3k

e Strings are now Unicode in Python 3K: https://docs.python.org/3.0/howto/
unicode.html

4.2 Standard end-user

As a standard user, you are of course exposed to all the changes implied by Python 3. You can
use the 2to3 tool shipped with Python 3 to translate your Python scripts. Note also that some
Python 3 syntaxes and behaviors are backward compatible with Python 2.6 and 2.7, you should
prefer them when possible.

Regarding the Gildas-Python binding itself, you should consider that:

e the support for Python 2.5 and lower has been removed (this, because Python offers some
Python 3 pre-compatibility of our Gildas-Python internal code starting from Python 2.6),

e the default Python strings are now Unicode strings, while Sic characters strings (and their
representation as a SicVariable in Python) remain ASCII strings (1 byte per character).
We tried to deal with this as transparently as possible for you, so that you can still perform
the usual actions on the SicVariable strings. Unfortunately, this implies many hidden
conversions between ASCII and Unicode.

4.3 Developers using the Python binding

If you are in charge of a Python module or package integrated in Gildas, you should be aware of
the following:

e as Gildas supports both Python 2 and 3, you are asked to provide your scripts with Python 2
syntax only. If needed, the scripts will be processed by the 2to3 Python tool at compilation
time. Try also to use Python 3 syntax backported to Python 2 as much as possible in order
to limit the differences between both syntaxes.

e if your scripts are part of a Python module, they will be implicitly Python—compiled[iz] at
compilation time. This pre-compilation is always done sooner or later by Python at first use
of the module. Our intent is to offer this compilation for users who do not have write-access
to the module installation path (e.g. shared installations of Gildas). See link for details.

gee https://docs.python.org/3/library/py_compile.html

4 PYTHON 3K 35

e designing the hierarchy of your Python package and (sub)modules is less trivial
than it seems. Check carefully the relative imports guidelines as described e.g. in
https://docs.python.org/2/faq/programming.html#what-are-the-best-practices-
for-using-import-in-a-module

4.4 Developers of Fortran GILDAS packages

As a pure Gildas developer (Fortran), the Gildas-Python binding offers to you the possibility to
make your library importable from Python. This is done with the rule IMPORT_FROM_PYTHON =
yes in the Makefile. Say, if your package is named foo, you should be aware that:

e the Python binary module pyfoo.so is not anymore a symbolic link to libfoo.so. Since
symbolic links are not portable, the module pyfoo.so has been made a real binary file.

e the file foo-pyimport.c (which provides the Python entry points) should not be compiled
anymore into the Gildas library libfoo.so. It is now the responsibility of Python to compile
it implicitly and to put it in the binary module pyfoo.so.

A WHAT’S NEW? 36

A What’s new?
e 2018-apr-24
— Removed support for Numeric obsolete python package.
e 2018-apr-09

— The __dir__ method of the gdict container (see section [2.3.3) is now redefined to
return the list of Gildas-Python shared variables.

e 2014-oct-13

— Added support for Python 3 (see details in section . Removed support for Python
2.5 and lower. Python 2.6 and 2.7 still supported.

e 2013-may-31

— Added argument verbose=True|False to the method get () (indicate if the method
should be verbose or not when importing Sic variables).

e 2013-may-30

— Document how to build Gildas with Python 2, when Python 3 is the default on the
system. Waiting for Python 3 support in the Gildas-Python binding, currently under
development.

e 2012-may-14

— The method .sicerror() is added to the Gildas-Python modules (e.g. pysic, pygreg,
etc). It is intended to set the error status ON in Sic when executing a Python script,
in order to raise custom errors from Python.

— The method .message() is added to the Gildas-Python modules, in conjuction to the
object seve. They should be used to print messages like Sic does, including on-screen
and/or to-file redirection, and application of filtering rules.

e 2012-mar-06

— Double quotes surrounding character strings arguments in SIC are now preserved when
they are passed to the sys.argv list in Python. This is a change of behavior as they
were implicitely removed up to now, but could lead to problems on some cases, e.g.
for Python commands using a leading “/” for options as Sic does.

e 2010-sep-07

— SIC aliases created from the SIC side are now automatically imported to the Python
side, like any other variables. SIC aliases were already supported, but not imported
by default.

e 2010-jul-08
— Python 2.7 and NumPy 1.4.1 are supported.
e 2010-mar-03

WHAT’S NEW? 37

— Added automatic creation of booleans (SIC logicals) when they are attached to a
SicStructure.

e 2010-jan-11

— When executing a Python script from Gildas, 'sys.argv’ is now a list (and not a tuple
anymore). This conforms the standard Python behavior.

e 2010-jan-07

— Improved retrieving of the arguments passed to a Python script through the SIC
PYTHON command. Make sure that double quoted strings with arbitrary number of
blanks are not split nor modified.

e 2009-nov-18
— Nested structures could not be correctly imported into Python in some cases. Fixed.
e 2009-oct-06

— Added method ’getlogical’ which translates a SIC logical and returns it in a Python
string.

e 2009-apr-27

— Fixed a recursive call at initialization time of SicVar instances.

— Ensure support for Python 2.6.2
e 2008-aug-01
— Ensure support for Python 2.5.2
e 2008-jun-02
— Gildas packages are available with a py* prefix: pysic, pygreg, pyastro, pyclass
and pymapping.

— Enhanced support of string (scalar) variables: they are imported as a single element,
i.e. characters are not splitted anymore in a subarray.

— Enhanced support of SicStructure: adding an attribute to a SicStructure in Python
automatically augments the corresponding structure in SIC.

e 2008-mar-06

— New beta release, still under development. As of the current date, pysic and pygreg
modules are obsolescent. They are replaced by a direct import of Gildas libraries
which have been made Python-importable. This can be done by import commands
such as import libgreg. Please consider that the prefix 1ib will soon disappear, and
pysic and pygreg modules will not be available anymore at this point.

— Thanks to the point above, some of the Gildas programs are now also importable from
Python: libastro, libclass. More will come soon.

e 2006-mar-13

A WHAT’S NEW? 38

Python modules pysic and pygreg are now provided to users. Importing one of them
into a Python script launches the SIC (resp. GreG) process and imports its variables
into the Python _main__.

Sic.localspaces: to prevent overwriting a variable when a deeper-level one is cre-
ated in SIC with the same name, a saving and unsaving automatic mechanism of the
SicVar and SicStructure instances into a 10-dimensional array (one per level) is
now available. To achieve this, the SicVar and SicStructure instances now have a
__siclevel__ attribute.

Sic.warnings logical flag activates/deactivates PygildasWarning’s.
Improvement of the Numeric 24.2 retrocompatibility.

Enforced variable write-protection (if any) by setting the ‘writeable’ flag of the
numpy .ndarray’s. For compatibility with Numeric, read-and-write or read-only status
in SIC is still checked each time array elements are attempted to be modified.

define() command can now be passed a second optional boolean argument which
describes if the variable will be global or not. By default it is not, e.g. it is local to
the current execution level.

Images are now automatically imported into Python at creation time. The get()
command is now also able to import images, thus the getimage() command is not
available anymore for users.

pexecfile() function is provided to user. It does the same as the execfile () Python
function (execute a Python script in current name space), but also prints the com-
mands during execution.

SIC\PYTHON PythonCommandLine and SIC\PYTHON PythonProcedureName.py func-
tionalities now print or not the command lines depending on the SIC/VERIFY flag
value.

SIC\PYTHON PythonProcedureName.py functionality now allows to be passed argu-
ments. They can be retrieved in the ’sys.argv’ list from Python. Arguments are
parsed by SIC before calling the script. SIC now also searches in the MACRO#DIR:
directories to find the Python script. Logical names are parsed if any.

Exit behavior is now the same whatever is the master process. To quit both SIC and
Python, use CTRL-D (or exit()) from Python, or EXIT from SIC. As a consequence,
use PYTHON (from SIC) and Sic() (from Python) to switch to the other command-line
interpreter.

64 bits support.

e 2006-oct-12

First beta release.

e 2006-sep-13

Python embedding into SIC. Python interpreter is started with new SIC command
’PYTHON’, and can execute Python command-lines, Python scripts, or even jump to
interactive mode.

Python (numerical) functions can now be called in SIC formulas, provided Python
interpreter is started and function exists in Python __main__.

A WHAT’S NEW? 39

Support for both Numeric and NumPy modules: __sicdata__ attribute is a
numpy .ndarray if NumPy is installed, or a Numeric.array if not.

e 2006-jul-07

Loss of the sicarray type. SicVar instances have now two elements: __sicname__
(the SIC variable name) and __sicdata_- (a numpy.ndarray). Previously __sicdata__
was a sicarray with itself a Numeric.array attribute.

NumPy support: SIC variables (arrays and scalars) are now imported as
numpy .ndarray, using the same C-API function from Numeric that NumPy still sup-
ports.

Adaptation of the adequates methods of the SicVar class to handle the unique element
of the numpy .ndarray scalars through [0] indexing (NumPy only provides indexing for
its scalars through [()] index).

Attempting to define an image attribute which name is already used for a native
method or attribute of the numpy.ndarray’s will not raise an error anymore but will
only warn the user.

SicVar strings now support concatenation (+) and duplication (*).

Automatic blank filling when assigning a Python string to a SicVar string (Numeric
provides this feature but NumPy does not: it requires the two strings to have the same
length).

A SicVar subarray is now also a SicVar with the same __sicname__ attribute and with
a __sicdata__ sharing its data with the original array, and thus with the SIC variable
(previously a SicVar subarray was a Numeric.array). Such subarrays inherit the
SicVar specific methods, such as string handling or write protection if any.

Usefull functions such as get(), comm() or exa() are now methods of the
Sicfunctions class, and are visible through the sic instance created during the pro-
cess initialization.

Creation of the sic(), greg(), define() and delete() methods of the Sic
functions class.

e 2006-jun-21

First unofficial release.

CONTENTS

Contents
I_Contextl
2 End-user documentation|
[2.1 Prerequisites (what you have to know) Lo
[2.1.1 Python basics[.
[Identifiers|
| Multidimensional-array arrangement in memoryf
[vars Ol e
[dirOl . . . o
[doc _|. . . .
[2.1.2 NumPy basics| e
| Attributes]
| Methodsl
| Functions|
| Subarrays and derivates| Lo
2.2 Using Python from SIC| o
221 The SIC command PYTHON| o v v v v ittt
[2.2.2 Calling Python functions|
2.3 Using SIC from Python|
[2.3.1 PyGildas modules|
[2.3.2 Special commands| oL
[commOl e e e e e
[setgdictO].
[getO] . . .
[exaQ] e e
[defineQOl e
[deleteOl e
[getlogicalO|
[2.3.3 The gdict container|
[2.3.4 The Sic object in Python _main_|.
2.4 Tmporting SIC objects|
[2.4.1 SIC arrays|. e
242 SlCscalarsd o o
|2.4.;i :Sl(z Sl[”g:l”lf:sl
[2.4.4 SIC 1mages| e
[2.4.5 Handling character strings|.,
2.5 Object status in SIC:|.
| Read-only or read-and-write?|
| Global or local variable?. oL
[3 Programmer documentation|
[3.1 Installing PyGILDAS|
[3.1.1 Prerequisites|
3.1.2 How to build your own Python version|.
[3.1.3 Python module readline for command history|

B14

Install NumPy module for Pythonl

40

CONTENTS

3.1.5 Install scipy module for Python (optional)|

3.1.6 Compiling Gildas with your custom Python (if any)

[3.2 How SIC variables are imported|.
[3.2.1 Comments on the strategy|. . . .

3.3 Array elements types|

4 Python 3K]|

4.3 Developers using the Python binding| . .
4.4 Developers of Fortran GILDAS packages|

[A_What’s new?

41

29
30
30
30
31
32
33

34
34
34
34
35

36

Index

NumPy, [3]

42

	Context
	End-user documentation
	Prerequisites (what you have to know)
	Python basics
	 Identifiers
	 Multidimensional-array arrangement in memory
	 vars()
	 dir()
	 __doc__
	NumPy basics
	 Attributes
	 Methods
	 Functions
	 Subarrays and derivates

	Using Python from SIC
	The SIC command PYTHON
	Calling Python functions

	Using SIC from Python
	PyGildas modules
	Special commands
	 comm()
	 setgdict()
	 get()
	 exa()
	 define()
	 delete()
	 getlogical()
	The gdict container
	The Sic object in Python __main__

	Importing SIC objects
	SIC arrays
	SIC scalars
	SIC structures
	SIC images
	Handling character strings

	Object status in SIC:
	 Read-only or read-and-write?
	 Global or local variable?

	Programmer documentation
	Installing PyGILDAS
	Prerequisites
	How to build your own Python version
	Python module readline for command history
	Install NumPy module for Python
	Install scipy module for Python (optional)
	Compiling Gildas with your custom Python (if any)

	How SIC variables are imported
	Comments on the strategy
	The SicVar class
	The SicStructure class

	Array elements types

	Python 3K
	References
	Standard end-user
	Developers using the Python binding
	Developers of Fortran GILDAS packages

	What's new?

