Actual computations

The sensitivity estimator computes the relationship between \ensuremath{\Delta t_\ensuremath{\mathrm{}}} and \ensuremath{\sigma_\ensuremath{\mathrm{Jy}}} with

  $\displaystyle \ensuremath{\sigma_\ensuremath{\mathrm{Jy}}} = \frac{\ensuremath{...
..._\ensuremath{\mathrm{pol}}}\,\ensuremath{\Delta t_\ensuremath{\mathrm{on}}}}},
$ (17)
where \ensuremath{T_\ensuremath{\mathrm{sys}}} is interpolated in frequency and airmass from the table, and the other parameters are defined by the observatory. It then computes the relationship between \ensuremath{\sigma_\ensuremath{\mathrm{K}}} and \ensuremath{\sigma_\ensuremath{\mathrm{Jy}}} with
  $\displaystyle \ensuremath{\sigma_\ensuremath{\mathrm{K}}} = \frac{\ensuremath{\...
...uremath{\theta_\ensuremath{\mathrm{min}}}}{4\,\ln{2}\,\ensuremath{\lambda}^2}.
$ (18)