
IRAM Memo 2016-2

Gridding spectra with CLASS

S. Bardeau1, J. Pety1,2

1. IRAM (Grenoble)
2. LERMA, Observatoire de Paris

March, 1st 2018
Version 1.1

Abstract

In the sep16a CLASS release, the internal code of the XY MAP command was refurbished to ensure
that datasets larger than the available RAM memory can be processed by slicing the data in intervals
of channels. The command is now also able to read direct or transposed input XY tables and/or to
write direct (LMV) or transposed (VLM) output cubes. The latter feature is useful to easily reimport
data when a 2nd step of baselining is desired on the gridded data cube. The online help was upgradeed
accordingly (see in particular the output of LAS> HELP XY MAP MEMORY).

This memo describes how the gridding is performed in CLASS, from the collection of spectra to
the spectral cube. It focuses on the file access efficiency, memory consumption, and how the user
choices can impact them.

Commands: TABLE, XY MAP, TRANSPOSE

Keywords: gridding, transposition, memory, large files
Related documents: CLASS documentation

1

Gridding spectra with CLASS Contents

Contents

1 Quick overview 3
1.1 Efficient table reading . 3
1.2 Efficient cube writing . 3
1.3 Efficient transpositions . 4

2 CLASS tables in details 4

3 Gridding with XY MAP 5
3.1 Gridding engine . 5
3.2 Output cube in details . 6

4 Implementation 6
4.1 Memory management . 6
4.2 In practice . 7

2

Gridding spectra with CLASS 1. quick overview

1 Quick overview

The gridding of spectra is done in CLASS with 2 commands and 3 files involved:

1. the spectra found in the input CLASS (.30m) file,

2. the table of spectra (.tab) created by the command TABLE,

3. the gridded spectra in a cube (.lmv) created by the command XY MAP.

If the input table and the output cube fit both in memory at the same time, the command XY MAP will
read and write them at once: this is the ideal and most efficient case.

On the other hand, for larger datasets, the command splits the problem in slices of velocities (contiguous
channels). With the way the input and output files can be ordered by default on the disk, reading or writing
one slice may imply traversing entirely a file, and to repeat this process each time for each slice. This is
known to decrease strongly the efficiency of the command XY MAP.

1.1 Efficient table reading

This document shows that the default table ordering is unefficient (but there are good reasons for this
ordering, see Section 2). For an efficient gridding process you should:

� give XY MAP the right to allocate as much as memory as possible, e.g. 90% of the RAM (assuming
you run a single CLASS session at a time), leaving typically 10% for the regular OS operations,

� if the problem still does not fit in memory, it is worth transposing the .tab table to .bat order before
invoking XY MAP.

This can be achieved with the commands

LAS> TRANSPOSE myfile.tab myfile.bat 21

LAS> SIC LOGICAL VOLATILE_MEMORY 90%

LAS> XY_MAP myfile ! Will take myfile.bat if available

Note that the memory allocated during XY MAP processing is freed as soon as the command terminates.

1.2 Efficient cube writing

The default cube order (.lmv) is efficient in terms of disk access, even for writing it at once or by slices.
However, if you want to produce a .vlm cube (for e.g. reuse with FILE IN myfile.vlm), you should:

� give XY MAP the right to allocate as much as memory as possible. If it can, the command will buffer
the whole .vlm cube before writing it all at once at the end,

� if the problem still does not fit in memory, you must produce first the .lmv cube and then transpose
it (XY MAP does not support writing a .vlm cube by slices).

This can be achieved with the commands:

LAS> SIC LOGICAL VOLATILE_MEMORY 90%

LAS> XY_MAP myfile ! Will produce myfile.lmv

LAS> TRANSPOSE myfile.lmv myfile.vlm 312

3

Gridding spectra with CLASS 2. class tables in details

1.3 Efficient transpositions

If you need to perform one of the transpositions above, you have to know that the command TRANSPOSE

faces the same problem of traversing the files by slices. For a better efficiency, you should give TRANSPOSE
the right to allocate as much as memory as possible (the larger the available memory, the smaller the
number of slices). This can be achieved with the commands:

LAS> SIC LOGICAL SPACE_GILDAS 4096 ! Megabytes

LAS> TRANSPOSE myfile.ab myfile.ba 21

The memory allocated by TRANSPOSE is also freed when the command terminates.

2 CLASS tables in details

CLASS can save a set of spectra with the command TABLE. It creates a 2D table using the Gildas Data
Format (a header and rows of data). By default, the per-column format used is:

1. the X offset position,

2. the Y offset position,

3. the spectrum weight W (e.g. for different integration times),

4. first channel intensity

and so on for all channels.

Such a table is ordered Velocity-Position (hereafter: VP), i.e. X, Y, W and then the channels are
contiguous in the file for each spectrum, and the spectra are concatenated one after the other. This has
some advantages and disadvantages which are described in the table 1 and compared to the opposite
Position-Velocity ordering (hereafter: PV).

Table 1: Advantages (+ or ++) and disadvantages (-) of VP- and PV-ordered Class tables

Velocity-Position Position-Velocity

1 ++ natural ordering for Class Data Format to
table conversion, i.e. the Class file (input)
and table (output) are traversed once in
parallel, the table may not fit in memory

- would need non-contiguous access either
to the Class file or to the output table in
memory, the table must fit in memory

2 ++ appending new spectra (TABLE APPEND

mode) is straightforward and low-cost
- TABLE APPEND is not easy, costs reading

and duplicating old data
3 - one needs to traverse the whole table to

read the X Y W columns
+ X Y W arrays are contiguous, reading

them has a marginal cost
4 + the VP order is already the correct one for

gridding (see section 3.1)
- the PV order need to be transposed in an

intermediate buffer before use in gridding
5 - reading by block of velocities is unefficient,

i.e. one needs to traverse the file as many
times as the number of blocks

++ reading by velocity blocks is efficient as
each block is a contiguous piece of file

From the items 1 and 2 in table 1, it is obvious that the result of the TABLE command must remain a
Velocity-Position table. However, the item 5 tends to show that Position-Velocity tables may be interesting

4

Gridding spectra with CLASS 3. gridding with xy map

for efficient1 gridding, especially for tables which do not fit in memory and must be read by blocks.

Transposing a Velocity-Position table can be done with the command SIC\TRANSPOSE; the advantages
and disadvantages are detailed in the table 2. The item 6 can be explained like this: both VP items 3 and
5 (table 1) and stand-alone transposition (table 2) need to traverse the input table several times. However,
because the former are part of a larger problem (reading the table but also convolving, writing the cube,
memory transpositions if any), they can use only a smaller amount of memory so they traverse the table
more times (smaller blocks and more of them are needed) than the stand-alone transposition. In other
words, and assuming the table does not fit in memory and that IO dominate the problem, VP gridding is
slower than transposition + PV gridding. This is even more true if gridding is repeated several times on
the same table. A demonstration of these conclusions is shown in table 3.

Table 2: Advantages (+) and disadvantages (-) of VP to PV stand-alone transposition

VP to PV

6 + file-to-file transposition is a stand-alone task which can involve a maximum of the machine
ressources, so that it is faster than the VP overheads (items 3 and 5) when performed
within the XY MAP command.

7 - the transposed table is a duplicate of the same data, it doubles the disk usage,
8 - the transposition must be repeated each time the original table changes or new data is

appended.

Table 3: Gridding of a table of 61263 spectra x 20737 channels (4.8 GB). Each command was allowed to
use only 2048 MB. The output cube (1.7 GB with the command defaults) is ordered LMV so that it is
traversed only once for writing. The system cache was emptied before each run.

Action Traversing table Elapsed time

XY MAP (VP) 1 (XYW) + 7 blocks 8.2 min
TRANSPOSE (VP to PV) 4 (in) + 1 (out) 5.0 min
XY MAP (PV) 1 1.9 min

From these conclusions, there is no unique answer to what kind of table should be feed in the gridding
engine. The answer is a mixture of efficiency when creating or appending the table, and reading it.
However, if the whole table fits in memory, i.e. it can be traversed once, then it is probably better to use
a VP table. Then, if it must be read by parts, the PV order should be prefered.

3 Gridding with XY MAP

3.1 Gridding engine

The gridding engine in CLASS (command XY MAP) is efficient partly because a single convolution kernel
for a given location can be computed and used for all planes. This implies the innermost loop to be on
channels (Velocity) and outer loops on X and Y (Position). In other word, the convolution engine works
with Velocity-Position arrays in memory (hence item 4 in table 1).

1with nowadays technologies, i.e. hard-drives IO dominate other issues like memory copies or CPU computing.

5

Gridding spectra with CLASS 4. implementation

3.2 Output cube in details

The gridding engine can write the resulting cube in either Position-Position-Velocity order (hereafter
LMV) or Velocity-Position-Position (hereafter VLM). The default is LMV. The table 4 describes both
possibilities.

Table 4: Advantages (+) and disadvantages (-) of LMV and VLM-ordered Class cubes

Position-Position-Velocity (LMV) Velocity-Position-Position (VLM)

9 - need transposing the convolved data be-
fore writing to the file

+ correctly ordered, convolved data can be
written as is

10 + the cube can easily be extended by block
of velocities, in particular it may not fit in
memory

- the cube can not (reasonably) be extended
on disk. If it fits in memory, it can be
written in a temporary output buffer, with
more memory cost.

11 + default ordering in Gildas, efficient for the
imaging tools (one image plane is contigu-
ous in the file)

- not the default in Gildas, many tools do
not expect such order

12 - need transposing for an efficient per spec-
trum analysis

+ the order is correct for spectrum-oriented
tools like Class or Cube.

4 Implementation

4.1 Memory management

Several data buffers are needed in this problem. In particular, transposition buffers are needed to go
to/from the internal gridding engine which works on velocity-first arrays. The buffers are:

1. the table data buffer (size Mtd = Nposi ×Nc),

2. the table transposition/sorting buffer (size Mtt = Nposi × Nc) if (and only if) the transposition of
the table (.bat) and/or sorting (positions not sorted by Y offsets) are needed. The same buffer is
used for both tasks.

3. the cube data buffer (size Mcd = Nx ×Ny ×Nc),

4. the cube transposition/sorting buffer (size Mct = Nx × Ny × Nc) if and only transposition of the
cube is needed (.lmv).

We call MT = Mtd +Mtt +Mcd +Mct the total amount of memory allocated to the buffers. Note that
they all scale as Nc. Some other allocatable buffers are involved (e.g. X, Y, W columns read from the
table) but they are neglictible in front of the data size, and they do not scale as Nc.

The command XY MAP needs memory space to allocate these buffers. However, it does not allocate
freely the memory: it ensures they fit in a limited memory space (VOLATILE MEMORY, we do not consider
here the way it is defined).

If MT < VOLATILE MEMORY, the 4 buffers above fit in the dedicated memory space. We are in the best
case where all the problem fits in memory. In particular, the output cube fits in memory and will be

6

Gridding spectra with CLASS 4. implementation

written at once, whatever its order.

If MT > VOLATILE MEMORY, the 4 buffers do not fit in the dedicated memory space. The problem will
be iterated by blocks of channels along its velocity dimension. There will be n iterations, the buffers being
divided by the same and correct amount. But, in this case, there are 2 possibilities:

� if the output cube is velocity-last (.lmv), it will be gdf-extended2 by block directly on the disk. In
other words it does not need to fit entirely in memory, only the current subset is loaded at a time.
The minimum number of subdivisions needed to remain below VOLATILE MEMORY is (floating point
division):

n = (Mtd +Mtt +Mcd +Mct)/VOLATILE MEMORY (1)

� if the output cube is velocity-first (.vlm), it must fit entirely in memory. The libgio does not offer
to write non-contiguous pieces of a cube (and we probably do not want this). This means we have
to find a balance for the cube data buffer (scaled as Nc) and the 3 other ones (scaled as Nc/n). In
this case, XY MAP accepts to allocate up to 50% of VOLATILE MEMORY for the whole data cube:

Mcd < 0.5× VOLATILE MEMORY (2)

If the output cube needs more than 50%, XY MAP stops with an error. Allocating more with leave
too few space for the other buffers, resulting in much increased number of iterations, traversing the
table more times, etc, leading to reduced efficiency. The recommendation is then to use a lmv cube
and to transpose it afterwards for a better efficiency. The remaining part of the memory is then
divided as usual between the other buffers to same and correct amount:

n = (Mtd +Mtt +Mct)/(VOLATILE MEMORY−Mcd) (3)

At this stage, n is the minimum (floating point) number of divisions needed. The number of channels
processed per division is then:

nc = floor(Nc/n) (4)

Rounding to an integer number of channels is obviously needed as the internal engine can not pro-
cess fraction of channels. Down-rounding is used because up-rounding could mean using more than
VOLATILE MEMORY per division. Because of the integer rounding, the actual number of divisions which
will be performed is finally:

n = ceiling(Nc/nc) (5)

Note that the last division may process less channels than the other ones, because the total number of
channels Nc may not be a multiple of nc.

4.2 In practice

One can check how the memory management described above applies to his dataset by enabling the
debugging messages before invoking the command XY MAP. In practice, reusing the same dataset as in the
Table 3, this gives:

sic message class s+d ! Enable Debug messages

sic logical VOLATILE_MEMORY 6GiB ! Custom memory buffer

xy_map myfile.tab

sic message class s-d ! Disable Debug messages

which shows (some outputs have been hidden for clarity):

2This means a first block of the cube is written as a whole, with a consistent header, then each new block extends the
last dimension of the data, always with a consistent header.

7

Gridding spectra with CLASS 4. implementation

I-XY_MAP, Reading columns X Y W

[...]

Table size: 61263 positions x 20740 values

[...]

Cube size: 148 by 142 pixels x 20737 channels

[...]

I-XY_MAP, Creating file: myfile.lmv

I-XY_MAP, Creating file: myfile.wei

D-XY_MAP, Using at most VOLATILE_MEMORY = 6.00 GB

D-XY_MAP, Mblocks: 3, MC: 9787, Size: 29361 20737

D-XY_MAP, --------------------

D-XY_MAP, Doing block 1/3, channels 1:9787, Nchan = 9787

D-XY_MAP>REALLOCATE>2D, Allocated workspace of size: 9787 x 61263 = 2.23 GB

D-XY_MAP, Reading table...

D-XY_MAP, Sorting table...

D-XY_MAP>REALLOCATE>2D, Allocated workspace of size: 9787 x 61263 = 2.23 GB

D-XY_MAP>REALLOCATE>3D, Allocated workspace of size: 9787 x 148 x 142 = 784.6 MB

D-XY_MAP, Convolving

D-XY_MAP, Transposing to LMV...

D-XY_MAP>REALLOCATE>3D, Allocated workspace of size: 148 x 142 x 9787 = 784.6 MB

D-XY_MAP, Writing LMV cube...

D-XY_MAP, --------------------

D-XY_MAP, Doing block 2/3, channels 9788:19574, Nchan = 9787

D-XY_MAP>REALLOCATE>2D, Workspace already allocated at an appropriate size: 9787 x 61263 = 2.23 GB

D-XY_MAP, Reading table...

D-XY_MAP, Sorting table...

D-XY_MAP>REALLOCATE>2D, Workspace already allocated at an appropriate size: 9787 x 61263 = 2.23 GB

D-XY_MAP>REALLOCATE>3D, Workspace already allocated at an appropriate size: 9787 x 148 x 142 = 784.6 MB

D-XY_MAP, Convolving

D-XY_MAP, Transposing to LMV...

D-XY_MAP>REALLOCATE>3D, Workspace already allocated at an appropriate size: 148 x 142 x 9787 = 784.6 MB

D-XY_MAP, Extending LMV cube...

D-XY_MAP, --------------------

D-XY_MAP, Doing block 3/3, channels 19575:20737, Nchan = 1163

D-XY_MAP>REALLOCATE>2D, Allocated workspace of size: 1163 x 61263 = 271.8 MB

D-XY_MAP, Reading table...

D-XY_MAP, Sorting table...

D-XY_MAP>REALLOCATE>2D, Allocated workspace of size: 1163 x 61263 = 271.8 MB

D-XY_MAP>REALLOCATE>3D, Allocated workspace of size: 1163 x 148 x 142 = 93.2 MB

D-XY_MAP, Convolving

D-XY_MAP, Transposing to LMV...

D-XY_MAP>REALLOCATE>3D, Allocated workspace of size: 148 x 142 x 1163 = 93.2 MB

D-XY_MAP, Extending LMV cube...

D-XY_MAP, --------------------

D-XY_MAP, Writing weight image...

I-XY_MAP, Time elapsed in command (total): 54.53 sec

I-XY_MAP, Time elapsed reading XYW: 36.94 sec

I-XY_MAP, Time elapsed reading the table: 5.26 sec

I-XY_MAP, Time elapsed sorting the table: 2.01 sec

I-XY_MAP, Time elapsed transposing table or cube: 1.80 sec

I-XY_MAP, Time elapsed convolving: 5.63 sec

I-XY_MAP, Time elapsed writing the cube: 2.80 sec

We find here some interesting informations. The input table provides Nposi = 61263 positions times
Nc = 20737 channels (+ 3 values for X,Y,W). The output cube has Nx = 148 times Ny = 142 pixels per
plane. Using VOLATILE MEMORY = 6 GiB, XY MAP chooses to split the processing in n = 3 blocks, using

8

Gridding spectra with CLASS 4. implementation

nc = 9787 channels per block (1163 in the last one).

In each block, we can see the allocation of buffers for each task, namely Mtd, Mtt, Mcd, and Mct. The
total is 5.99 GB, which fits exactly in the VOLATILE MEMORY limit. We see that because the .tab is ordered
VP, the table does not need to be transposed. Note also that the first slice of the cube is written at the
end of the first block. The others slices are then written by extending the cube.

Finally, the command shows a summary of the processing time per task3. The key point here is that
reading the X,Y,W columns takes more than 50% of the total processing time. Again, this is because the
table is ordered VP, so the columns are not contiguous in the file (spread all other the file), which must
be traversed entirely for such a small information in comparison of the 20737 channels. It would have
been almost instantaneous with a PV table. Note also that reading the table data in only 5.26 seconds
here, because the system has saved the file in the system cache when we read the X,Y,W columns. This is
possible because this example is small and fits in memory. For larger files (greater than system memory),
reading (a part of) the table would cost again and again the same time in each block as it took reading
X,Y,W. Finally, the main goal of the command which is to add and convolve the data at each pixels takes
only about 10% of the overall processing time.

3They are faster here than in the Table 3 because the command was executed on a faster machine and with a larger
memory buffer.

9

