The header parameters


Table: CLASS header parameters used to describe the frequency/velocity axes and their translation in this document.
CLASS name Unit Translation Notation
nchan Number of channel
rchan Reference channel \ensuremath{i_{\ensuremath{\mathrm{0}}}}
restf MHz Tuned signal rest frequency \ensuremath{f_\ensuremath{\mathrm{tuned,sig}}^{\ensuremath{\mathrm{rest}}}}
image MHz Tuned image rest frequency \ensuremath{f_\ensuremath{\mathrm{tuned,ima}}^{\ensuremath{\mathrm{rest}}}}
fres MHz Observatory channel spacing \ensuremath{\delta \ensuremath{f_\ensuremath{\mathrm{}}^{\ensuremath{\mathrm{meas}}}}}
vres \ensuremath{\, \ensuremath{\mathrm{km\,s^{-1}}}} Velocity channel spacing \ensuremath{\delta \ensuremath{v_{\ensuremath{\mathrm{}}}^{\ensuremath{\mathrm{meas}}}}}
voff \ensuremath{\, \ensuremath{\mathrm{km\,s^{-1}}}} source systemic velocity \ensuremath{v_{\ensuremath{\mathrm{sys}}}^{\ensuremath{\mathrm{meas}}}}
doppler Doppler factor \ensuremath{d_{\ensuremath{\mathrm{sys}}}^{\ensuremath{\mathrm{meas}}}}

Table [*] describes the CLASS header parameters used to describe the frequency/velocity axes and their translation in this document. The signal and image frequency axis are given in the source (rest) frame by

  $\displaystyle \ensuremath{f_\ensuremath{\mathrm{sig}}^{\ensuremath{\mathrm{rest...
...th{\delta \ensuremath{f_\ensuremath{\mathrm{}}^{\ensuremath{\mathrm{rest}}}}},
$ (35)
and
  $\displaystyle \ensuremath{f_\ensuremath{\mathrm{ima}}^{\ensuremath{\mathrm{rest...
...th{\delta \ensuremath{f_\ensuremath{\mathrm{}}^{\ensuremath{\mathrm{rest}}}}},
$ (36)
with
  $\displaystyle \ensuremath{\delta \ensuremath{f_\ensuremath{\mathrm{}}^{\ensurem...
...m{\ensuremath{\mathrm{sys}}}}}^{\ensuremath{\mathrm{meas}}}}}{\ensuremath{c}},
$ (37)
where \ensuremath{\delta \ensuremath{f_\ensuremath{\mathrm{IF}}^{\ensuremath{\mathrm{meas}}}}} is the frequency channel spacing , and \ensuremath{v_{\ensuremath{\mathrm{\ensuremath{\mathrm{sys}}}}}^{\ensuremath{\mathrm{meas}}}} is the source systemic velocity in the measurement frame. The corresponding velocity axis in the measurement frame is thus given by
  $\displaystyle \ensuremath{v_{\ensuremath{\mathrm{}}}^{\ensuremath{\mathrm{meas}...
...}}}}{\ensuremath{f_\ensuremath{\mathrm{tuned}}^{\ensuremath{\mathrm{rest}}}}}.
$ (38)