
MRTCAL Programmer Manual

Questions? Comments? Bug reports? Mail to: gildas@iram.fr

The gildas team welcomes an acknowledgment in publications
using gildas software to reduce and/or analyze data.
Please use the following reference in your publications:

http://www.iram.fr/IRAMFR/GILDAS

Documentation
In charge: S. Bardeau1.
Active developers: J. Pety1,2, A. Sievers3.

Software
In charge: S. Bardeau1, A. Sievers3.
Active developers: J. Pety1,2.

1. IRAM (Grenoble)
2. Observatoire de Paris
3. IRAM (Granada)

Related information is available in:

� MRTCAL User Manual

� CLASS Manual

� GREG: Graphical Possibilities

� SIC: Command Line Interpretor

ii

Contents

1 Chunks and chunksets 1

1.1 Chunks slicing . 1

1.2 Polarimetry . 4

2 Reading the DATA column 7

2.1 Discarding bad time dumps . 7

2.2 Dump cycle identification . 7

2.3 Reading the DATA column by pieces . 8

3 Positions 9

3.1 Reference position . 9

3.2 Scan offsets . 9

3.3 Antenna offsets . 9

3.3.1 Projection system . 10

3.3.2 Interpolation . 10

3.3.3 Wobbler switching . 11

3.3.4 Slow and Fast traces . 11

3.4 Offsets of multi-pixel receiver . 11

3.4.1 Handling the derotator . 11

3.4.2 Computing the pixel coordinates . 13

3.4.3 Description of the radio projection . 14

3.4.4 In practice: Effect on Polaris observations 19

3.5 Guessing ON and OFF positions . 24

4 Interpolation of calibration products 27

5 Memory index 29

5.1 Strategy . 29

5.2 Contents . 29

6 Scan date vs observation date: Midnight issue 33

7 Patching IMB-FITS at read time 35

7.1 Added elements when missing . 35

7.2 Modified elements . 36

iii

Contents

8 IMB-FITS version 2.13 37
8.1 Primary . 37
8.2 IMBF-scan . 38
8.3 IMBF-frontend . 39
8.4 IMBF-backend . 40
8.5 IMBF-backendFTS . 41
8.6 IMBF-antenna . 41

iv

Chapter 1

Chunks and chunksets

For the processing of the IMBFITS files, MRTCAL introduces the concept of chunks (see
Fig 1.1). One dump of the IMBFITS DATA column is a collection of such chunks. MRTCAL
can make no assumption on the way they are ordered (this comes from ???). The PART column
indicates to which spectrum each chunk belongs (spectra are identified with integer numbers).
Each “set of chunks belonging to the same final spectrum” is called a chunkset in the MRTCAL
nomenclature. From one chunkset, MRTCAL will produce one spectrum1.

The chunks in each DATA row can belong to several spectra (e.g., 8 for FTS), and by definition
to as many chunksets. MRTCAL maps those chunksets internally as a chunkset 1D Fortran
structure, i.e., an array of chunksets.

The DATA column has as many rows as the number of pixels of the receiver times the number of
time dumps. This introduces 2 new dimensions which are used to map all2, the DATA column into
a chunkset 3D Fortran structure. The 2 new dimensions here are pixels and time (see Fig 1.2).

For its internal needs, MRTCAL has to refer to a single time dump in the 3rd dimension. It
can also time-average this 3rd dimension. In those 2 use-cases, the final product is then available
through a chunkset 2D Fortran structure.

1.1 Chunks slicing

In order to be able to make calibration at a bandwidth smaller than the hardware chunks,
MRTCAL is able to map the raw data block read with CFITSIO into smaller memory chunks.
The main advantage is that this approach has very well defined boundaries: When the IMBFITS
BACKEND table is read, it can be replaced on-the-fly with its sliced version. All the rest of the
code does not have to know this happened. The downside is that the more memory chunks
are defined, the more overheads they carry (e.g. description of their spectroscopic axis, calls to
chunk-by-chunk subroutines, stitching, etc). Experience shows that slicing the 1400 MHz of FTS
chunks into 14 chunks of 100 MHz introduces a penalty of 10% in the whole computation time
(reading, slicing, calibrating, writing).

In practice, user can request the bandwidth he wishes. In order to slice the USED channels
into comparable pieces, MRTCAL will choose the nearest bandwidth which gives an integer
number of slices

N = nint

(
USED× |SPACING|

W

)
(1.1)

1For debugging purpose, MRTCAL can also produce one spectrum per chunk.
2MRTCAL can also map a fraction of the DATA column, process it, and then iterate on the next fraction. This

can be useful on memory-limited machines.

1

Figure 1.1: How one dump in the IMBFITS DATA column is divided into chunks, gathered by
family (chunksets), and reordered to produce the spectra.

2

Figure 1.2: How all the dumps in the IMBFITS DATA column is divided into 3D chunksets.
After this, they can be time-averaged, or can be accessed one by one.

3

where W is the requested bandwidth. N must also be corrected so that there is at least 1 and
at most USED channels per subchunk

USED ≥ N ≥ 1. (1.2)

While the CHANS value (total number of channels) is often a multiple of 2, USED channels
have no special value. In particular, it may not be a multiple of N . Their relationship can be
written as

USED = q ×N + r, (1.3)

where q and r are respectively the integer quotient and the remainder of the division USED/N .
Since 0 ≤ r ≤ N − 1, USED can be divided in N subchunks, r of them having one extra channel

USED = [q × (N − r)] + [(q + 1)× r] . (1.4)

This gives the best channel division and a negligible difference of subchunks bandwidth.
ZZZ Say a word about the “famous” special channel with its half weight. Slicing does not

have any special problem with it.

1.2 Polarimetry

The presence of polarimetric measurements in the IMBFITS file is described in the POLAR

column of the BACKEND table. For a non-polarimetric scan, all the chunks in the POLAR column
have the NONE value. For a polarimetric scan, values can be NONE, AXIS, REAL or IMAG (note that
non-polarimetric chunks -NONE- can be mixed with polarimetric ones).

In addition, calibration scans for polarimetric measurements must provide a calGrid subscan.
It absent, MRTCAL will mark this scan failed as it can not be used to calibrate polarimetric
science scans.

4

Figure 1.3: Hardware chunks can be virtually divided into smaller pieces just by redefining the
BACKEND table. In this example, the table is sliced from 1 chunk to 3 subchunks (3 times more
lines in the table). The same raw data block read with CFITSIO will be mapped by Mrtcal
with a larger number of memory chunks.

5

6

Chapter 2

Reading the DATA column

2.1 Discarding bad time dumps

The BackendDATA table provides the data dumps collected during the subscan integration. In
particular, it shows the dump MJD, its integration time INTEGTIM, its phase number through
cycles (ISWITCH) and the data itself (channels) in the DATA column.

It may happen that a dump is flagged out by the control system. In this case, its ISWITCH
value is 0. Such a dump should be discarded during the calibration process. This is achieved
with the command MSET CALIBRATION BAD YES|NO (default NO, i.e. discard bad time dumps).

In practice, this is not just a matter of skipping undesired rows when dealing with the DATA

column. The first issue is that the values in the associated columns are unreliable. This is
particularly true with the MJD value which is not set to the actual MJD of the dump. This
introduces inconsistent values in this column, resulting in an unsorted column, breaking the
dichotomic search engine. In order to solve this issue, MRTCAL compresses at read time the
MJD, INTEGTIM, and ISWITCH columns, discarding the rows where ISWITCH is null. The size of
those columns is decreased from Ntot to Ngood (with Ntot = Ngood +Nbad).

MRTCAL keeps also track of the discarded dumps thanks to two new columns added. One
column named FOREPOIN (size Ntot) provides a forward pointer, i.e. FOREPOIN(i) is the position
of the ith dump (as found in the original columns) in the compressed columns. If the dump is bad,
the corresponding position is set to 0 (i.e. dump not available in the compressed columns). It also
adds a column named BACKPOIN (size Ngood) which provides a backward pointer: BACKPOIN(j)

is the position of the jth dump (as found in the compressed columns) in the original columns.

At this stage, MRTCAL has patched the BackendDATA columns so that the bad dumps
are removed, but this is not fully transparent for later use.

2.2 Dump cycle identification

From a general point of view, the dumps have to be calibrated by cycles, each cycle repeating the
same sequence of several phases. In order to do this, MRTCAL identifies those sequences in the
ISWITCH column. As this column may have been compressed, the identification also takes into
account the BACKPOIN column: a cycle is valid if the expected sequence is found in the compressed
column AND if the associated back pointers are contiguous in the original columns.

7

2.3 Reading the DATA column by pieces

MRTCAL is designed to be able to process the subscans within an arbitrary limited buffer size
(MSET BOOKKEEPING SPACE Value, default 512 MBytes). If the buffer size is large enough, the
whole DATA column can be loaded at once in memory and its dumps can be treated in a row. If
the buffer is not large enough, the DATA column has to be load by pieces, and each piece has to
be processed separately from the other.

In practice, the calibration routine asks the reading routine to load the piece of DATA which
contains at least a desired range of dumps (usually a cycle of a few dumps). At least means that
the reading routine ensures that the range will be present entirely in the buffer, but more dumps
will also be loaded in order to fill at best the buffer. On subsequent requests, if the desired range
is already present in the buffer, nothing will be reloaded, in order to save calls to CFITSIO and
I/O accesses.

At this stage, one should consider that CFITSIO is asked to read a block of rows from the
DATA column. CFITSIO is not able to skip some bad rows here and there, and it would be
unefficient to ask for reading the desired rows one by one. So CFITSIO reads a piece of the
DATA column, including good and bad dumps. But right after, MRTCAL sets a 3D chunkset
(Nset×Npix×Ntime) pointing to the good dumps only. Then the calling routine has just to work
with the 3D chunkset, with no need to care for bad dumps.

8

Chapter 3

Positions

3.1 Reference position

For each spectrum, the Class Data Format expects a reference (usually source) position. In
MRTCAL, this reference is taken from the LONGOBJ and LATOBJ (Source longitude and latitude
in basis frame) in the Scan HDU. The coordinate system of these values are taken from header
cards CTYPE1 and CTYPE2 (RA and DEC for equatorial system, GLON and GLAT for galactic system).
Note that the trailing characters describing a projection system (e.g. -SFL) are useless: they do
not apply to any data which can be found in the Scan HDU.

3.2 Scan offsets

From the absolute reference defined at 3.1, the IMBFITS format can define an intermediate
position, through the SYSOFF, XOFFSET and YOFFSET columns in the SCAN table

� if only the Nasmyth row is present, an implicit projection row is added at read time with
(0,0) offsets,

� if the projection row is available, the associated offsets are added to the antenna offsets (see
next section) and used into the CLASS Data Format,

� if something else than projection is available, e.g. horizontalTrue, a specific support is not
yet available in MRTCAL and an error is raised. However, if the associated offsets are
(0,0)1, Mrtcal will tolerate this system of offsets. This is a temporary solution, waiting for
a full support of all systems.

3.3 Antenna offsets

The antenna offsets are found in the LONGOFF and LATOFF columns in the Antenna Slow HDU.
These antenna offsets are to be added to the scan offsets defined at 3.2. Note that these offsets
describe the primary dish pointing position. In case of wobbler switching, the beam does not
point to this position (see section 3.3.3 for details).

1This can happen e.g., if the user has commanded OFFSETS 0.0000000E+00 0.0000000E+00 /SYSTEM

"trueHorizon" in PAKO

9

3.3.1 Projection system

The antenna offsets are expressed in a system described by the card SYSTEMOF in the Antenna
HDU. If its value is:

� projection, this means the offsets are radio-projected in the current coordinate system,
i.e. the system found at 3.1; the offsets can be used “as is” in class,

� something else, e.g. horizontalTrue for calSky, the offsets are not expressed in the correct
frame and should be recomputed to the desired sky coordinate system (class does not offer
the possibility to express the reference in one system and the offsets in another). ZZZ this
is not yet implemented, warning for now.

3.3.2 Interpolation

The antenna offsets are derived from the Antenna Slow table together with other position values.
Namely the 5 following elements have to be computed:

� lambda offset from reference position,

� beta offset,

� azimuth,

� elevation,

� local sidereal time.

All these elements are available in the ANTSLOW table, at a typical sampling rate of 1 Hz. Since
the spectra dumps can be produced at different time sampling (no assumption is made on the
rate or its variations), each spectrum positions are interpolated from the ANT table thanks to
their respective Modified Julian Day values

f =
mjdS −mjdA(j)

mjdA(j + 1)−mjdA(j)
(3.1)

where mjdS is the spectrum MJD value, and mjdA(j) is the MJD value of the jth trace in the
ANTSLOW table. j is computed thanks to a dichotomic search in the table such as

mjdA(j) ≤ mjdS < mjdA(j + 1). (3.2)

f being the interpolation fraction between the jth and j+1th trace, the positions are interpolated
by

lS = lA(j) + f × [lA(j + 1)− lA(j)] , (3.3)

where lS and lA are the spectrum and antenna lambda offsets respectively. Same formula applies
for the beta, azimuth, and elevation values.

If mjdS is found beyond the ANTSLOW table limits, the boundary values are applied without
extrapolation. However, this is not expected to happen since such spectra should be rejected
since they are out of the on-track range.

10

3.3.3 Wobbler switching

In case of wobbler switching, the LONGOFF and LATOFF columns describe the primary dish direction
on sky. Because the secondary mirror switches with additional offsets between the ON and
OFF positions, MRTCAL assumes that the ON phases always have (0,0) antenna offsets. For
simplicity, the OFF phases offsets are also set to (0,0) (instead of ±∆/2) but the class switching
section will describe properly the throw when saving the ON-OFF result, or when saving the
ON and OFF separately. Remember that the wobbler throw is usually along azimuth with a
given projection, while the class offsets are described in equatorial or galactic system with radio
projection: their addition is not straightforward.

3.3.4 Slow and Fast traces

The IMBFITS files provide 2 antenna streams and associated tables: The slow (1 Hz) and the
fast (128 Hz) traces. For each of those traces, some antenna position parameters are available,
plus the associated time as MJD values.

As of today (IMBFITS version 2), the 2 traces are in the same FITS extension. Both have
the same number of rows, but the fast trace has 128 values per column and per row, while the
slow trace has 1 value per column and per row. However, even if they have the same number of
rows, they are INDEPENDENT: For example, their MJDs are misaligned by a ∼2 seconds shift
(2 rows). They should not be correlated! In the IMBFITS version 3, the 2 traces will be clearly
separated in 2 FITS extensions, which will avoid any misinterpretation.

Note that the caveat exposed above explains whyMRTCAL selects more dumps thanMIRA
in on-the-fly maps: MIRA looks at the antenna slow column TRACEFLAG to flag out MJD values
in the antenna fast. Because of the ∼2 seconds shift between the 2 traces, more time dumps are
discarded.

3.4 Offsets of multi-pixel receiver

In the IMBFITS files, the backend table describes how the chunks cover the bandwidth and from
which receiver they come from (e.g. H or V polarization). In this table, the column PIXEL also
describes from which pixel the signal comes. This is useful in the context of multi-pixel receivers.
In such a case, there are several pixels which do not look at the same position on sky. In the
frontend table header, the derotator mode (sky, frame, or horizontal) and angle describe the
commanded inputs from the user. The derotator table, which is present in the IMBFITS files
only if relevant, describes the commanded and actual derotator position through time, at typical
intervals of 5 seconds. We describe below how MRTCAL makes use of these informations.

3.4.1 Handling the derotator

If the subscan has no derotator table, the current pixel (obviously the unique pixel) is left centered
on the current position (reference + position offset) computed in the section 3.3.2. On the other
hand, if a derotator table is present, MRTCAL will apply a per-pixel offset.

First of all, MRTCAL tries to guess the actual derotator angle on sky. The strategy is the
following:

� angle on sky will be chosen from the column sAct (“sky Actual”), as opposed to fAct

(“frame Actual”) and hAct (“horizontal Actual”). This assumes sAct values are reliable
even if the current derotator mode is not sky.

11

Figure 3.1: Asymmetrical wobbler switching illustration. For each subscan, the antenna (primary
dish) points at ±∆/2 away from the source, usually in the azimuthal direction (blue line). This
is called antenna noding. During the subscan, the secondary mirror switches (red line) from
the ON position (at offset 0) to one OFF position (at offset ±∆). ∆ is the wobbler throw.
This pattern, which alternates between OFF1 and OFF2 at each subscan, is called asymmetrical
wobbler switching, as opposed to the symmetrical wobbler switching (see details in Fig 3.2).

Figure 3.2: Symmetrical wobbler switching illustration. Same as Fig 3.1, except that the sub-
scans are observed with symmetry around a given time. Thanks to this, and assuming that
the atmospheric properties drift linearly through time, the atmospheric variations between the 2
OFF1 subscans and between the 2 OFF2 subscans average at the same level.

12

� if the column sAct is empty (this can happen around midnight), a warning is raised and
the returned value is the commanded value as found in the frontend table header. In this
case, the derotator mode must be sky.

� if the column sAct provides no value within the subscan range, a warning is raised.

� if the column sAct has a single row, or if the chunk MJD is beyond the table limits, the
unique/nearest value is used.

� if the chunk MJD lies within the column sAct limits, the derotator angle is interpolated
according the associated MJD column and to the chunk MJD computed earlier.

� if the chunk MJD is further than 5 seconds2 from the nearest point in the column sAct, an
additional warning is raised.

� finally, if the actual angle is more than 0.5 degrees away from the commanded value (e.g.
derotator has reached its rotating limit), a warning is raised.

3.4.2 Computing the pixel coordinates

Given the actual position of the derotator, MRTCAL can compute the pixel position on sky from
the current telescope position. This position has been pre-computed using the radio projection
(LONGOFF and LATOFF columns in the IMB-FITS), only the per-pixel offsets are to be added.
MRTCAL checks first if it knows the offsets for the current receiver (as found in the column
RECNAME in the frontend table). The pixels offsets are not self-described in the IMBFITS: they
must be hardcoded in the program, with a correct correspondance between the pixel number
found in the backend table and the hardcoded offsets3. Once the offset of the current pixel is
found, the strategy is the following.

� The current position (reference + position offset) is unprojected to absolute spherical co-
ordinates.

� The pixel position angle on sky is computed, given the pixel position in the array and the
derotator angle.

� The spherical distance from the array center is added using an inverse Haversine formula,
i.e., the pixel position in absolute spherical coordinates is found by adding an arc of great-
circle towards the correct direction.

� The resulting position is reprojected again as a reference + position offset in the current
projection system.

The deprojection, offset in spherical coordinates, and reprojection are done by the Gildas internal
engines.

25 seconds is the derotator sampling rate under normal conditions.
3See the Fig.4 in the HERA user manual for this receiver.

13

3.4.3 Description of the radio projection

The unprojection-reprojection approach to add the pixel offsets is more accurate than simple offset
addition to projected position, in particular far away from the equator of the coordinate system.
If we look at the radio projection (its standard FITS name is Global Sinusoidal, abbreviated into
GLS) of the full sky shown in Fig. 3.3, we can see that one can expect strong distortions near
the pole. Note that the distortions depend on the declination of the object and NOT on the
declination of the projection center4. In other words, the plane of projection is not tangent to
the projection center, but to the equator instead. This is directly linked to the mathematical
formula of the radio projection

x = (A−A0)× cos(d), (3.4)

y = d− d0, (3.5)

where (A0, d0) is the projection center, (A, d) the object absolute coordinates, and (x, y) its
offsets in the projected map. The key point in this projection is that x is a function of d and not
d − d0. Hence, the deformation for wide fields of view will depend both on the distance to the
projection center and the source declination! That’s why the radio projection is deprecated and
IAU recommends to replace it by the Sanson-Flamsteed projection (abbreviated in SFL).

The distortions near the pole may thus have a non-negligible impact on observations. Fig-
ures 3.4 to 3.6 show the effect in different conditions. The geometry of the multi-beam array
shows no visible distortions, even one degree away from the source position, when the source
position is located on the equator. However, the distorsions of the array geometry increase with
the distance to the projection center when the source is located at high declination. Moreover,
for the same source coodinates, the deformation at high source declination depends on the right
ascension of the projection center (cf. Fig. 3.6), but they are independent of the projection center
declination (cf. Fig. 3.5)!

4... while most of the other projections offer minimal distortions near the projection center!

14

Figure 3.3: Radio projection of the full sky (right ascension from -12 to 12 hours, declination from
-90 to 90 degrees), for four projection centers (marked with a blue cross) at 0 right ascension and
0, 30, 60, 90 degrees declination. The parallels (resp. the meridians) are spaced by 30 degrees
(resp. 2 hours).

15

Figure 3.4: Effects of the radio projection on observations with HERA for source centers at 4h,
12h, 20h Right Ascension and 0, 44, 88 degrees declination (blue crosses). In this case, the
projection center is aligned on the source center. The green polygon shows the shape of
a 1 square degree field in sky spherical coordinates. In addition, the red parallelograms show the
resulting shape of a 480′′ × 480′′ square multi-beam array as a function of the distance from the
source center. Finally, the parallels (resp. meridians), shown as black dashed lines, are separated
by 0.5 degree (resp. 1 degree).

16

Figure 3.5: Same as Fig. 3.4, except that the projection center is located 15 degrees south
the source center. The deformations are independent of the declination of the projection
center!

17

Figure 3.6: Same as Fig. 3.4, except that the projection center is located 1 hour angle west
from the source center. The deformations depend on the right ascension of the projection
center.

18

3.4.4 In practice: Effect on Polaris observations

For reference, we first remind the observing strategy advised in the HERA manual. Two main
points will help us explain the behavior on Polaris.

� The array is rotated by a given angle that ensures Nyquist sampling and optimal sky
coverage in a single observation (i.e., each portion of the sky is observed only by one of the
nine pixels during a scan). This requires two contiguous subscans.

� However, the observing strategy usually set up at Pico Veleta samples regularly the projected
sky and not the sky itself as naive users tries to obtained rectangular projected maps.
Moreover the HERA receiver array is a perfect square in focal plane and on the sky, but
not in the projected map!

Under observer-friendly conditions, namely relatively small maps near the projection center and
maps near the equator, these rules deliver the expected result. However, if those conditions
are not met (large field of view and the source is located at high declination), the sky and the
projected map will both be incorrectly sampled!

Maps near Polaris (declination 87:42:04.6) where observed during the project 219-07 (PI:
P.Hily-Blant). The maps extend typically from (0,0) to (-1500,2000) arcsec (projected offsets).
We focus here on the scans 26 and 40 covering the projection center, and scans 98 and 115
observed at the largest distance from the projection center.

Figure 3.7 shows the scans observed near the projection center. They do not show any
particular effect visible by eye. The array receiver is still square (rotated by 9.6 degrees5) on the
projected map, and the coverage of the 2 scans is as expected. Figure 3.8 shows the scan coverages
in spherical coordinates (i.e., without projection). The spherical sky is correctly sampled.

On the other hand, the scans observed far away from the projection center (−1500′′, 2000′′)
are highly affected by the projection distortions. The projected receiver array is not square
anymore. It is parallelogram-shaped in the projected map. As a consequence, the rows scanned
in declination are shifted. Figure 3.9 shows that the vertical scanning is not correctly sampled
in the projected sky. This can be understood by looking at the scan in absolute coordinates
(Fig. 3.10): The scan does not follow a South-North direction suited for the 9.6 degrees derotator
angle on the sky. To first order, the angle should have been different (the exact value is not
computed here)6. On the other hand, the scan along the right ascension is correctly sampled,
but the start and end points of the rows are actually shifted in projected coordinates compared
to the scan 26 near the projection center. This leads to different edge effects in right ascension
according to the declination of the source center.

5See HERA Manual Fig.7
6To second order, the pattern is an arc and the derotator angle could have to be modified along the scan.

19

Figure 3.7: Scans 26 (top) and 40 (bottom) relative coordinates (radio projection) of project
219-07 observing Polaris (declination 87:42:04.6). The observing strategy is the usual one, i.e.
there were 2 OTF subscans (red: first subscan, black: second subscan), with a 9.6 degrees
derotator angle, and a slight shift from one subscan to another to fill the gaps. These 2 scans
cover the (0,0) reference position.

20

Figure 3.8: Same as Fig.3.7 (scans near the projection center) but showing absolute coordi-
nates. In this case, the uniform mapping of the projected map results in uniform mapping of
the sky.

21

Figure 3.9: Same as Fig.3.7 but showing scans 98 (top) and 115 (bottom) relative coordinates
(radio projection). The same observing strategy is used. These 2 scans cover the (-1500,2000)
offset position, far from the reference position. Note parallelogram shape of the receiver array in
the projected map, and as a consequence the unexpected coverage of the vertical scan.

22

Figure 3.10: Same as Fig.3.9 (scans far from the projection center) but showing absolute coor-
dinates. In this case, the attempt of uniform mapping of the projected map results in unexpected
mapping of the sky. In particular, the 9.6 degrees derotator angle on the sky is obviously not
suited here.

23

3.5 Guessing ON and OFF positions

Depending on the observing mode, the telescope is expected to observe 1 or 2 positions on the
sky:

� Position switch: 2 positions (ON + OFF)

� Wobbler switch: 1 or 2 positions

� Frequency switch: 1 position

Those positions are not described directly in the IMB-FITS. Instead, the positions of each
dump is available in the LONGOFF and LATOFF columns of the antenna slow table. By using equiva-
lence classes of the X and Y offset pairs, it should straightforward to group the dumps by position.

For projection offset system, i.e. when offsets are described along a sky system of coordinates
(equatorial or galactic), this approach is correct: the offsets are all strictly identical for a given
position and for both coordinates. All digits are the same, there are no numerical round-off errors.

Figure 3.11: LONGOFF and LATOFF vs MJD for iram30m-fts-20150429s199-imb.fits (whole scan).
Observing mode is tracked wobbler switch, using horizontalTrue offset system. During the
scan, elevation changes from 82.3 to 83.6 degrees.

On the other hand, for horizontalTrue offset system, the offsets drift. In the
horizontalTrue offset system, LONGOFF are actually offsets along azimuth, corrected by

24

cos(elevation), and LATOFF are offsets along elevation. If we look at the example in Fig. 3.11, we
can see that:

� LATOFF offsets are all null: this means that all the dumps were sharing the same elevation as
the reference (source) position. The telescope is tracking the source, so that the elevation
changes (this can be seen in the CELEVATIO column), but not the offset in this direction.

� LONGOFF offsets are drifting, slowly decreasing for both positions.

Because of this drift, MRTCAL uses a centi-arcsecond tolerance when the equivalence classes
are computed. If we reuse the example in Fig. 3.11, this tolerance is still not enough and results
in 6 different positions:

E-SUBSCAN>LIST>BUILD, Scan has 6 positions (expected 1 or 2):

E-SUBSCAN>LIST>BUILD, Position #1: -119.82903552 0.00000000

E-SUBSCAN>LIST>BUILD, Position #2: 119.82643276 0.00000000

E-SUBSCAN>LIST>BUILD, Position #3: -119.81881083 0.00000000

E-SUBSCAN>LIST>BUILD, Position #4: 119.81592996 0.00000000

E-SUBSCAN>LIST>BUILD, Position #5: -119.80748135 0.00000000

E-SUBSCAN>LIST>BUILD, Position #6: 119.80419607 0.00000000

25

26

Chapter 4

Interpolation of calibration products

MRTCAL computes one set of calibration products per chunk. These products are:

� the receiver temperature,

� the calibration temperature,

� the system temperature,

� the precipitable water vapor,

� and the zenithal opacity.

Their exact values are evaluated for the frequency at the middle of the chunk1. The values at
other frequencies in the chunk can be evaluated using one of the two available modes:

1. in the flat mode, the central values are reused over all the chunk bandwidth.

2. the second mode is interpolation. In this case, the chunks are reordered by ascending
frequency, and the values at non-central frequencies are interpolated between the current
chunk and its nearest neighbour, so that it is computed at the frequency of the desired
channel. This has the advantage to avoid discontinuities along the whole bandwidth and
thus to avoid calibration platforming. For the two half-chunks at the boundary of the whole
bandwidth, where no neighbour chunk is available, the values are extrapolated from the
boundary chunk and its neighbour on the other side.

1Remember that the chunk bandwidth is ruled by MSET CALIB BANDWIDTH

27

28

Chapter 5

Memory index

5.1 Strategy

MRTCAL indexes IMBFITS files in the so-called index files. A raw index file named index.mrt
can be produced with the command INDEX BUILD (see command help for more advanced uses).
When one or more index files are then reopened for reading, the command INDEX OPEN builds
a memory index named the “Input indeX” (IX). At this stage, IX gathers the summary of all
entries in all opened index files. From this full set, the command MFIND can be used to make a
selection of desired entries: This is the “Current indeX” (CX).

While the primary purpose of the index files is to reference IMBFITS files, their other
advantage is to store other products that can be derived from the IMBFITS files. In particular,
after the calibration, the commands CALIBRATE and PIPELINE will save new versions of each
calibrated entry. These new versions have a modified calibration status (from none to failed,
empty, or done), and optionally a calibration section added (storing the calibration results).
These modified versions of the entries are themselves saved in an index file (either the original
one, or a new one, depending on the user choice), AND are implicitly appended to IX. After the
calibration process, it is then easy for the user to select from IX the calibrated entries (or failed,
or pending, etc). The figure 5.1 shows a basic example of these steps.

Figure 5.1: Basic example showing how the IMBFITS files are first indexed, and then how
the calibration command (here, PIPELINE) adds a new version of each (tentatively) calibrated
IMBFITS.

5.2 Contents

When the index file is loaded, its index content is duplicated in memory for all the entries. These
elements are described in the Table 5.1.

29

Table 5.1: Memory index elements coming directly from the index file.

Parameter Unit Comment

bloc records Entry position in index file
word words Entry position its this record
version — Entry version
telescope code Telescope code
projid — Project id
source — Source name
dobs gag date Observation date
ut rad Observation time
lst sec Local Sideral Time
az rad Azimuth
el rad Elevation
frontend — Receiver names
scan — Scan number
backend code Backend code
obstype code Observation type
switchmode code Switching mode
filstatus code Can read file or not?
calstatus code Calibration status
filename — IMBFITS file (no path)
itime nanosec Last indexing time (from 01-jan-1970)

However, these elements alone are not enough to deal with each IMBFITS file referenced
in the index. Extra numbers are associated on-the-fly, at load time. The Table 5.2 summarizes
those numbers. In details, here is the exact meaning of those numbers.

num The observation number is a unique number associated to each IMBFITS file. Uniqueness is
ensured by a unique combination of the observing date, the scan number, and the backend.
In a memory index, there can be several version of the same observation, meaning that
the same IMBFITS file is indexed several times (e.g., a first time when the index is built,
a second time after the calibration). This number (and optionaly its version) is intended to
be used as a frontend to the end-user. However, it is volatile: It can change from one session
(or one INDEX OPEN) to another, depending on the index contents, and their number and
order if several indexes are loaded in memory. In practice, the observation numbers are
contiguous, starting from 1, and ordered by observing date, then by scan number, then by

Table 5.2: Memory-only index elements associated to each entry

Parameter Unit Comment

num — Observation number
mnum — Entry position in the Input indeX (IX)
fnum — Entry position in the index file
idir code Associated index file and IMBFITS directory
sort — Sorting array

30

backend code.

mnum The memory number is the entry position in the input index (IX), and thus it provides a
unique identifier for each entry indexed in memory. This means that the array ix%mnum(:)

runs contiguously from 1. Since IX is the absolute reference for all sub-indexes (e.g., the
current index CX), each entry of any index can easily be identified thanks to this back
pointer (e.g., cx%mnum(ient)).

fnum The file number is the entry position in its associated index file. This number can not be
implicit, because several index files can be loaded in memory, and because the entries are
reordered by date, scan and backend at load time.

idir the directory code identifies each index file loaded in memory, so that each entry knows easily
to which index file it comes from. This code also identifies the directory the IMBFITS
can be found in (remember the index file may not be hosted in the same directory; this is
controled by the user through the command INDEX /FILE).

sort The sorting array is an indirection array which would order the memory index by date, by
scan, and by backend. At load time, the entries are actually ordered in memory, so this
array is not needed at this time. But later on, commands like CALIBRATE or PIPELINE can
add new versions of the entries. These new entries are appended at the end of the memory
indexes, in order to avoid breaking the cross references between indexes (in particular, the
cx%mnum(:) back pointers to ix). Each application which needs to access the entries sorted
by date, scan, and backend, should then use the sorting array. Typically, one has to loop
on cx%mnum(cx%sort(ient)) (with ient 1 to cx%next-1) to access the entries ordered
correctly.

31

32

Chapter 6

Scan date vs observation date:
Midnight issue

When a new scan is prepared1 at the telescope, the associated IMBFITS file name is constructed
with the current date. Later in this process (up to several minutes after), the scan is actually
started2, and the current date and time are used to build the MJD-OBS and DATE-OBS in the FITS
Primary header. If those two steps are performed exactly before and after midnight respectively,
the file name and the Primary header refer to 2 different dates, e.g.

iram30m-fts-20120809s323-imb.fits:

MJD-OBS = 56149.0038078704 / MJD at observation start

DATE-OBS= ’2012-08-10T00:05:29.000’

For several purposes, MRTCAL saves the observing date and time of each file in the index.
In order to deal correctly with the above issue, it is decided

1. to save the date as found in the file name, so that there is no difference for the user between
the file name and the date exposed by MRTCAL;

2. the time value saved for this file refers to the above date.

The direct consequence of those 2 rules is that, in case of the midnight issue exposed above, the
UT value will be larger then 24h. Note that the UT value associated to each file is saved for
bookkeeping purpose, e.g. for analysis of the calibration though date and time. It is considered
as a typical value for the whole scan. Each individual spectrum produced by MRTCAL uses its
own date and time.

In details, the observing date saved in the index is used

� to check the entry uniqueness (date, scan and backend triplet should be unique),

� to sort the entries (by date, scan and backend),

� through the command MFIND /DATE,

� in the output of the command MLIST,

� in the Sic variables MDX%DOBS and MHEAD%KEY%DOBS

1scan prepared or scan loaded in the NCS nomenclature.
2scan started or subscan 1 started in the NCS nomenclature.

33

and the associated UT value is used

� to sort the entries,

� in the output of the command MLIST,

� in the Sic variables MDX%UT and MHEAD%KEY%UT

The user should be ready to encounter UT values larger than 24h in the MLIST output and larger
than 2π in the Sic variables.

34

Chapter 7

Patching IMB-FITS at read time

MRTCAL is divided in 2 main libraries:

1. the libimbfits reads the IMB-FITS files and fills a memory structure from it,

2. the libmrtcal gets the libimbfits memory structure, and use it to index the files and calibrate
them.

When MRTCAL has to deal with several versions of the IMB-FITS (e.g. V1.35 for HERA and
V2 for EMIR), the variations are hidden in the libimfits so that the libmrtcal does not have
to worry about those details. This means that the memory structure is unique while the disk
structure differ1. There are also other cases when we want to fill memory structures that differ
from the file on disk. All this is described hereafter.

Note that each patch is saved as a warning in the comment field of each element. Those
warning are visible when using the command MDUMP.

7.1 Added elements when missing

The purpose of adding elements in the HDUs when they are missing is that the libmrtcal does
not have to worry about this element existing or not, and and doing different things (different
code) in one case or the other. The following elements are added:

� POLEX and POLEY are absent under V1.35: they are defined and default to 0,

� SYSOFF, XOFFSET, and YOFFSET columns in the Scan table can have 0, 1, or 2 rows. They
are forced to 2 rows providing Nasmyth and projection offsets (default to 0 if they were
absent),

� the LINENAME column in the BackEnd HDU is built from the LINENAME column in the
FrontEnd HDU for IMB-FITS version lower than 2, or for 4MHz backend,

� MJD BEG and MJD END keywords are added as convenient duplicates of DATE-OBS and
DATE-END keywords in all HDUs of each subscan. They offer MJD values instead of ISO
strings,

1Note that this strategy is in use since a long time in gildas to ensure the backward compatibility of the various
formats.

35

� the column TSTAMPED is added to BackendDATA tables in IMB-FITS version lower or equal
to 1.35. Its defaults to 1. Remember that this value is sensitive (it introduces a shift on
the time stamps) and is actually backend-dependent.

� an IFRONT column is added as a convenient backpointer from the BackEnd table to the
FrontEnd table, i.e. each chunk knows easily to which receiver it is associated.

7.2 Modified elements

� IFCENTER, FRQOFF1, and FRQOFF2 columns from the FrontEnd table are reversed for each
row where IFFLIPS is true. This factorizes the sign issues when dealing with IF2 instead
ot IF1,

� The column BAND is read under the name PART for IMB-FITS version lower than 2. Same
for REC1 and REC2 read under the names RECEIVER and BAND respectively,

� REFCHAN is patched to correct values (instead of 1) when dealing with continuum backend
(1 channel per chunk),

� all the BackEnd columns, namely PART, REFCHAN, CHANS, DROPPED, USED, PIXEL, RECEIVER,
BAND, POLAR, REFFREQ, SPACING, and LINENAME are sliced into memory to more values than
from the file in order to factorize at once the MSET CALIBRATION BANDWIDTH tuning. NAXIS2
is updated accordingly. See section 1.1 for details,

� the columns MJD, INTEGTIM and ISWITCH are compressed if MSET CALIBRATION BAD is NO
(this is the default). In this case all rows where ISWITCH is 0 are removed. Two new columns
FOREPOIN and BACKPOIN are added as cross pointers between the original and compressed
columns. See section 2.1 for details.

� the DATE-OBS and DATE-END stamps of each subscan are patched if MSET CALIBRATION

MJDINTER is YES. See HELP for details.

36

Chapter 8

IMB-FITS version 2.13

For single pixel receiver, the IMB-FITS data format provides the following FITS extensions:

0. Primary: general description of the observation

1. IMBF-scan: scan description (source, antenna offsets, etc)

2. IMBF-frontend: frontend description (which receiver was connected, etc)

3. IMBF-backend: backend configuration i.e. how the chunks translate to sky frequency.

Then, the 3 following extensions are repeated for each subscan (example with FTS backend):

4. IMBF-backendFTS: provides the data dumps through time,

5. IMBF-antenna: provides the antenna position through time at slow and fast rates.

6. IMBF-subreflector: not used by MRTCAL.

Each of these extensions are detailed below from an example scan, showing the output of the
command MDUMP1

8.1 Primary

SIMPLE (L) = T / file does conform to FITS standard

BITPIX (I4) = 32 / number of bits per data pixel

NAXIS (I4) = 0 / number of data axes

EXTEND (L) = T / FITS dataset may contain extensions

TELESCOP (C) = IRAM 30m / Telescope Name

ORIGIN (C) = IRAM / Organisation or Institution

CREATOR (C) = Python IRAM MBFITS Wri / Software

IMBFTSVE (R8) = 2.13000000000000 / IMBFITS version

INSTRUME (C) = fts / Backend

OBJECT (C) = XXXXXXXX / Source Name

LONGOBJ (R8) = 00.0000000000000 / [deg] Source longitude in basis frame

LATOBJ (R8) = 00.0000000000000 / [deg] Source latitude in basis frame

TIMESYS (C) = UTC / time system (TT,TAI,UTC ...)

MJD-OBS (R8) = 57841.4547916667 / MJD at observation start

1MDUMP slightly modifies the header elements at read time for convenience. Some remarks are added accordingly
in the output.

37

DATE-OBS (C) = 2017-03-29T10:54:54.00 /

LST (R8) = 83367.1998821900 / [s] Local apparent sidereal time (scan start)

PROJID (C) = 102-16 / project ID

QUEUE (C) = 102-16 / Observing Queue

EXPTIME (R8) = 15.0000000000000 / Total netto integration time [s]

N_OBS (I4) = 3 / No of subscans defined

N_OBSP (I4) = 3 / No of subscans found

OBSTYPE (C) = calibrate /

NUSEFEED (I4) = 8 /

TOTANT (I4) = 23 / Total no. of LINES in antenna tables

TOTSUBR (I4) = 59 / Total no. of LINES in secondary tables

TOTBACK (I4) = 33 / Total no. of LINES in backenddata tables

8.2 IMBF-scan

XTENSION (C) = BINTABLE / binary table extension

BITPIX (I4) = 8 / 8-bit bytes

NAXIS (I4) = 2 / 2-dimensional binary table

NAXIS1 (I4) = 23 / width of table in bytes

NAXIS2 (I4) = 2 / number of rows in table

PCOUNT (I4) = 0 / size of special data area

GCOUNT (I4) = 1 / one data group (required keyword)

TFIELDS (I4) = 3 / number of fields in each row

EXTNAME (C) = IMBF-scan / name of this binary table extension

TELESCOP (C) = IRAM 30m / Telescope Name

TELSIZE (R8) = 30.0000000000000 / [m] Telescope Diameter

SITELONG (R8) = -3.39875641986850 / [deg] observatory longitude (EAST)

SITELAT (R8) = 37.0684132670517 / [deg] observatory latitude (NORTH)

SITEELEV (R8) = 2851.50000000000 / [m] observatory elevation

PROJID (C) = 102-16 / Project ID

OBSID (C) = XX / Observer initials

OPERATOR (C) = Pako / Operator initials

SCANNUM (I4) = 138 / Scan number

DATE-OBS (C) = 2017-03-29T10:54:54.00 / scan start in TIMESYS system

DATE (C) = 2017-03-29T10:55:18 / Date of FITS file creation

MJD (R8) = 57841.4547916667 / [day] Scan date/time (Modified Julian Date)

LST (R8) = 83367.1998821900 / [s] Local apparent sidereal time (scan start)

N_OBS (I4) = 3 / Number of observations in this scan

EXPTIME (I4) = 15 / Total netto integration time [s]

TIMESYS (C) = UTC / time system (TT, TAI, UTC ...)

UT1UTC (R8) = 0.477150000000000 / [s] UT1-UTC time translation

TAIUTC (R8) = 35.0000000000000 / [s] TAI-UTC time translation

ETUTC (R8) = 67.1840000000000 / [s] Ephemeris Time - UTC time translation

GPSTAI (R8) = 0.00000000000000 / [s] GPS time - TAI translation

POLEX (R8) = 2.714956614210000E-08 / [rad] Celestial Pole Offset X

POLEY (R8) = 1.781205464400000E-06 / [rad] Celestial Pole Offset Y

OBJECT (C) = XXXXXXXX / Source name

CTYPE1 (C) = RA-SFL / Basis system (longitude) --

CTYPE2 (C) = DEC-SFL / Basis system (latitude) -- XLAT-SFL

RADESYS (C) = / additional system definition for ecliptic/equat

EQUINOX (R8) = 2000.00000000000 / [Julian yrs] Equinox

CRVAL1 (R8) = 0.00000000000000 / [deg] Native frame zero in basis system (long.)

CRVAL2 (R8) = 0.00000000000000 / [deg] Native frame zero in basis system (lat.)

38

LONPOLE (R8) = 0.00000000000000 / [deg] Native longitude of celestial pole: range

LATPOLE (R8) = 0.00000000000000 / [deg] Basis latitude of native pole

LONGOBJ (R8) = 00.0000000000000 / [deg] Source longitude in basis frame

LATOBJ (R8) = 00.0000000000000 / [deg] Source latitude in basis frame

SWTCHMOD (C) = totalPower / Switch mode

NOSWITCH (I4) = 1 / no. of switch phases in a switch cycle

PHASETIM (R8) = 0.500000000000000 / [s] Integration time per phase

WOBTHROW (R8) = 0.00000000000000 / [deg] wobbler throw

WOBDIR (I4) = 0 / wobbler throw direction

WOBCYCLE (R8) = 0.00000000000000 / [s] wobbler period

WOBMODE (C) = / wobbler mode (SQUARE/TRIANGULAR})

NFEBE (I4) = 8 / \nfebe\ number of FEBEs

PRESSURE (R8) = 728.500000000000 / [hPa] Atmospheric pressure (hPa)

TAMBIENT (R8) = -3.00000000000000 / [deg C] Outside temperature (C)

HUMIDITY (R8) = 36.6000000000000 / [%] Relative Humidity (%)

WINDDIR (R8) = 187.300000000000 / [deg] Wind direction (deg)

WINDVEL (R8) = 1.50000000000000 / [m/s] Wind velocity (m/s)

WINDVELM (R8) = 2.50000000000000 / [m/s] Wind max. velocity (m/s)

DATE-WEA (C) = 2017-03-29T10:55:15.58 / Time of weather station par.

REFRACTI (R8) = 0.00000000000000 / [none] Refraction Correction, as a function of

THOT (R8) = 295.150000000000 / [K] Hot Load Temperature in K

DATE-HOT (C) = 2017-03-29T10:54:44.75 / Time of Hot Load Temp. meas.

TIPTAUZ (R8) = 0.136721000000000 / [] Tau meter zenith opacity

TIPTAUC (R8) = 0.999226000000000 / [] Tau meter goodness of fit

DATE-TIP (C) = 2017-03-29T10:54:50.85 / Time of Tau from Taumeter

SYSOFF (C) = Nasmyth projection / WARNING! Added a dummy ’projection’ value

XOFFSET (R4) = -1.9150140E-04 0.000000 / WARNING! Added a dummy ’projection’ value

YOFFSET (R4) = 2.6664753E-05 0.000000 / WARNING! Added a dummy ’projection’ value

8.3 IMBF-frontend

XTENSION (C) = BINTABLE / binary table extension

BITPIX (I4) = 8 / 8-bit bytes

NAXIS (I4) = 2 / 2-dimensional binary table

NAXIS1 (I4) = 139 / width of table in bytes

NAXIS2 (I4) = 1 / number of rows in table

PCOUNT (I4) = 0 / size of special data area

GCOUNT (I4) = 1 / one data group (required keyword)

TFIELDS (I4) = 22 / number of fields in each row

EXTNAME (C) = IMBF-frontend / name of this binary table extension

SCANNUM (I4) = 138 / Scan number

DATE-OBS (C) = / observing date (Y2K format with time) in TIMESY

DEWRTMOD (C) = / Dewar tracking system

DEWANG (R8) = 0.00000000000000 / [Deg] Dewar angle

FEBEBAND (I4) = 1 / \nbd\ number of basebands for this febe

FEBEFEED (I4) = 8 / \nfd\ total number of feeds

NUSEFEED (I4) = 8 / \nch\ Number of feeds in use.

VELOSYS (R8) = 6.70000000000000 / [km/s] Source Radial Velocity in Reference Fram

SPECSYS (C) = LSR / Reference Frame

VELOCONV (C) = optical / Convention for doppler correction

EMIRBEAM (C) = right / EMIR beam used

RECNAME (C) = E230 / Receiver Name

LINENAME (C) = L220510 / Line Name

39

RESTFREQ (R8) = 220.510000000000 / [GHz] Rest frequency of line

BEAMEFF (R4) = 0.9200000 / Beam efficiency

ETAFSS (R4) = 0.9200000 / Forward efficiency

GAINIMAG (R4) = 5.0119001E-02 / (spectral line) Gain ratio image/signal sideban

SIDEBAND (C) = LI / Side Band

SBSEP (R8) = 12500000000.0000 / [Hz] Sideband separation

WIDENAR (C) = NULL / WARNING! Column not found in table

TCOLD (R4) = 32.82200 / Cold Load Temperature

THOT (R4) = 292.6630 / Hot Load Temperature

IFEED (I4) = 1 / selected feed

NOFEEDS (I4) = 1 / No. of feeds

POLA (C) = / Feed orientation

DOPPLER (C) = Doppler / Frequency tracking

IFCENTER (R4) = 6.250000 / IF center Frequency

BANDWID (R4) = 4.000000 / [Hz] Bandwidth for this receiver

IFFLIPPS (L) = F / IF flipps frequency scale

SPECLO (L) = F / Special LO used

TSCALE (C) = antenna / Temperature scale selected

FRQTHROW (R4) = 0.000000 / [GHz] Frequency switching throw

FRQOFF1 (R4) = 0.000000 / [GHz] Frequency offset 1

FRQOFF2 (R4) = 0.000000 / [GHz] Frequency offset 2

8.4 IMBF-backend

XTENSION (C) = BINTABLE / binary table extension

BITPIX (I4) = 8 / 8-bit bytes

NAXIS (I4) = 2 / 2-dimensional binary table

NAXIS1 (I4) = 81 / width of table in bytes

NAXIS2 (I4) = 24 / number of rows in table

PCOUNT (I4) = 0 / size of special data area

GCOUNT (I4) = 1 / one data group (required keyword)

TFIELDS (I4) = 12 / number of fields in each row

EXTNAME (C) = IMBF-backend / name of this binary table extension

SCANNUM (I4) = 138 / Scan number

DATE-OBS (C) = 2017-03-29T10:54:54.00 / observing date (Y2K format with time) in T

FEBEBAND (I4) = 1 / \nbd\ number of basebands for this febe

FEBEFEED (I4) = 8 / \nfd\ total number of channels

NUSEFEED (I4) = 8 / \nch\ Number of channels in use.

PART (I4) = 2 ... 6 / Identification

REFCHAN (I4) = 1 ... 376833 / Refrence Channel

CHANS (I4) = 16384 ... 16384 / Number of Channels

DROPPED (I4) = 1843 ... 1843 / Channels dropped

USED (I4) = 12494 ... 12494 / Channels used

RECEIVER (C) = E2HUI ... E2VLO / Receiver connected

IFRONT (I4) = 1 ... 1 / Backpointer to frontend table (memory only)

BAND (C) = E2HUI ... E2VLO / Sub-band specification

POLAR (C) = NONE ... NONE / Polarization

PIXEL (I4) = 1 ... 1 / Pixel No. (arrays)

REFFREQ (R4) = 7200.000 ... -8480.000 / [MHz] IF reference frequency

SPACING (R4) = -4.8828125E-02 ... -4.8828125E-02 / [MHz] Spacing

LINENAME (C) = L220510 ... L220510 / Additional Line Name

40

8.5 IMBF-backendFTS

The DATA column is omitted in this output:

XTENSION (C) = BINTABLE / binary table extension

BITPIX (I4) = 8 / 8-bit bytes

NAXIS (I4) = 2 / 2-dimensional binary table

NAXIS1 (I4) = 1572888 / width of table in bytes

NAXIS2 (I4) = 11 / number of rows in table

PCOUNT (I4) = 0 / size of special data area

GCOUNT (I4) = 1 / one data group (required keyword)

TFIELDS (I4) = 5 / number of fields in each row

EXTNAME (C) = IMBF-backendFTS / name of this binary table extension

SCANNUM (I4) = 138 / Scan number

OBSNUM (I4) = 1 / Observation number

BASEBAND (C) = / [--] Baseband number

DATE-OBS (C) = 2017-03-29T10:54:54.41 / observation start in TIMESYS system

MJD_BEG (R8) = 57841.4547964699 / Duplicate of DATE-OBS (memory only)

DATE-END (C) = 2017-03-29T10:54:58.42 / observation end in TIMESYS system

MJD_END (R8) = 57841.4548428241 / Duplicate of DATE-END (memory only)

CHANNELS (I4) = 393216 / \nch\ Number of channels for this baseband

NPHASES (I4) = 1 / no. of switch phases in a switch cycle

PHASEONE (C) = ON / First phase is ON or OFF source

TSTAMPED (R8) = 1.00000000000000 / Where the time stamps apply

MJD (R8) = 57841.4547911713 ... 57841.4548490417 / [day] MJD at integration start

INTEGTIM (R8) = 0.498954000000000 ... 0.498954000000000 / [s] Integration time

ISWITCH (I4) = 1 ... 1 / Integration type

FOREPOIN (I4) = 1 ... 11 / Forward pointer to compressed columns

BACKPOIN (I4) = 1 ... 11 / Backward pointer to uncompressed columns

8.6 IMBF-antenna

MRTCAL splits the antenna extension in the antenna slow and antenna fast descriptions.
Antenna slow:

XTENSION (C) = BINTABLE / binary table extension

BITPIX (I4) = 8 / 8-bit bytes

NAXIS (I4) = 2 / 2-dimensional binary table

NAXIS1 (I4) = 6228 / width of table in bytes

NAXIS2 (I4) = 8 / number of rows in table

PCOUNT (I4) = 0 / size of special data area

GCOUNT (I4) = 1 / one data group (required keyword)

TFIELDS (I4) = 19 / number of fields in each row

EXTNAME (C) = IMBF-antenna / name of this binary table extension

SCANNUM (I4) = 138 / Scan number

OBSNUM (I4) = 1 / Observation number

DATE-OBS (C) = 2017-03-29T10:54:54.41 / observation start in TIMESYS system

MJD_BEG (R8) = 57841.4547964699 / Duplicate of DATE-OBS (memory only)

DATE-END (C) = 2017-03-29T10:54:58.42 / observation end in TIMESYS system

MJD_END (R8) = 57841.4548428241 / Duplicate of DATE-END (memory only)

OBSTYPE (C) = calibrate / Observation type

SUBSTYPE (C) = calSky / Subscan type

SUBSTIME (R8) = 5.00000000000000 / [s] Subscan time

41

SYSTEMOF (C) = projection / System for offsets

SUBSXOFF (R8) = -2.908882000000000E-03 / [rad] Subscan x offset

SUBSYOFF (R8) = 0.00000000000000 / [rad] Subscan y offset

SETYPE01 (C) = / Segment type

SETIME01 (R8) = 0.00000000000000 / [s] Segment time

SEXOFF01 (R8) = 0.00000000000000 / [rad] Segment x offset

SEYOFF01 (R8) = 0.00000000000000 / [rad] Segment y offset

SEXSTA01 (R8) = 0.00000000000000 / [rad] Segment x start

SEYSTA01 (R8) = 0.00000000000000 / [rad] Segment y start

SEXEND01 (R8) = 0.00000000000000 / [rad] Segment x end

SEYEND01 (R8) = 0.00000000000000 / [rad] Segment y end

SESPES01 (R8) = 0.00000000000000 / [rad/s] Speed at start of segment

SESPEE01 (R8) = 0.00000000000000 / [rad/s] Speed at end of segment

DOPPLERC (R8) = 0.999881490337000 / Doppler correction factor

OBSVELRF (R8) = 28.8325140071000 / [km/s] Observer velocity in rest frame

MJD (R8) = 57841.4547916667 ... 57841.4548726852 / [Julian day] MJD at integration start

LST (R8) = 83367.2657212536 ... 83374.2848861940 / [s] Local apparent sidereal time (integration s

LONGOFF (R8) = -2.908881986513734E-03 ... -2.908881986513734E/ [rad] long. offset from source in user native f

LATOFF (R8) = 0.00000000000000 ... 0.00000000000000 / [rad] lat. offset from source in user native fr

CAZIMUTH (R8) = 1.31577241984522 ... 1.31600523032287 / [rad] Commanded Azimuth

CELEVATI (R8) = 0.630288975389516 ... 0.630683181202881 / [rad] Commanded Elevation

TRACEFLA (I4) = 0 ... 0 / Trace Flag

Antenna fast:

XTENSION (C) = BINTABLE / binary table extension

BITPIX (I4) = 8 / 8-bit bytes

NAXIS (I4) = 2 / 2-dimensional binary table

NAXIS1 (I4) = 6228 / width of table in bytes

NAXIS2 (I4) = 8 / number of rows in table

PCOUNT (I4) = 0 / size of special data area

GCOUNT (I4) = 1 / one data group (required keyword)

TFIELDS (I4) = 19 / number of fields in each row

EXTNAME (C) = IMBF-antenna / name of this binary table extension

DATE-OBS (C) = 2017-03-29T10:54:54.41 / observation start in TIMESYS system

MJD_BEG (R8) = 57841.4547964699 / Duplicate of DATE-OBS (memory only)

DATE-END (C) = 2017-03-29T10:54:58.42 / observation end in TIMESYS system

MJD_END (R8) = 57841.4548428241 / Duplicate of DATE-END (memory only)

TRACERAT (I4) = 128 / No. of fast traces per slow trace

MJDFAST (R8) = 57841.4547569444 ... 57841.4548494466 / [Julian day] MJD at integration start

AZIMUTH (R8) = 1.31550400027680 ... 1.31576626838095 / [rad] Encoder Azimuth

ELEVATIO (R8) = 0.631753369365499 ... 0.632199246447845 / [rad] Encoder Elevation

42

	Chunks and chunksets
	Chunks slicing
	Polarimetry

	Reading the DATA column
	Discarding bad time dumps
	Dump cycle identification
	Reading the DATA column by pieces

	Positions
	Reference position
	Scan offsets
	Antenna offsets
	Projection system
	Interpolation
	Wobbler switching
	Slow and Fast traces

	Offsets of multi-pixel receiver
	Handling the derotator
	Computing the pixel coordinates
	Description of the radio projection
	In practice: Effect on Polaris observations

	Guessing ON and OFF positions

	Interpolation of calibration products
	Memory index
	Strategy
	Contents

	Scan date vs observation date: Midnight issue
	Patching IMB-FITS at read time
	Added elements when missing
	Modified elements

	IMB-FITS version 2.13
	Primary
	IMBF-scan
	IMBF-frontend
	IMBF-backend
	IMBF-backendFTS
	IMBF-antenna

