
sic

a gildas working group software

20-oct-2015

sic
sympathetic interpretor of commands

sympathique interpréteur de commandes
language SIC version 9.3
language GUI version 1.2

language VECTOR version 4.0
language TASK version 3.0

language ADJUST version 2.0

The GILDAS working group is a collaborative project of the Observatoire de Grenoble (1,3)
and IRAM (2), and comprises: F. Badia2, D. Broguière2, G. Buisson1, L. Desbats1, G. Duvert1,
T. Forveille1, R.Gras3, S. Guilloteau1,2, R. Lucas1,2, R. Neri2 and P. Valiron1.

(1) Laboratoire d’Astrophysique
Observatoire de Grenoble

BP 53 X
414 Rue de la Piscine

F-38402 Saint Martin d’Hères CEDEX

(2) Institut de Radio Astronomie Millimétrique
300 Rue de la Piscine

F-38406 Saint Martin d’Hères

(3) CEPHAG
Observatoire de Grenoble

F-38402 Saint Martin d’Hères CEDEX

Contributions from and invaluable discussions with J. Cernicharo, P. Begou3, S. Delahaye3, A.
Dutrey1,2, C. Kahane1, P. Monger, J.L. Monin1 and all gildas users are gratefully acknowledged.

1

CONTENTS 2

Contents

1 Introduction 9

2 The SIC Monitor 10
2.1 Basic Features . 10

2.1.1 Syntax . 10
2.1.2 The Prompt . 11
2.1.3 The on-line HELP . 11
2.1.4 The Stack . 12
2.1.5 Line Editing Facility . 12
2.1.6 The Log File . 13
2.1.7 Symbols . 13

2.2 Variables and Expressions . 14
2.2.1 Definitions and Assignments . 14
2.2.2 Functions and Operators . 14
2.2.3 Vector Operations . 16
2.2.4 Implicit Loops . 16
2.2.5 Conditional Assignment . 17
2.2.6 Size casting . 17
2.2.7 GILDAS Images . 17
2.2.8 GILDAS Headers . 18
2.2.9 Structures . 20
2.2.10 Character Variables and Implicit Formatting 21
2.2.11 Initializing variables from external files . 21

2.3 SIC as a programming language . 22
2.3.1 Procedures (or Command Files) . 22
2.3.2 Loops . 22
2.3.3 Structured Programming and Logical Expressions 23
2.3.4 Execution Level . 24
2.3.5 Error Recovery . 25

2.4 The GUI (“Graphics-User-Interface”) Mode . 26
2.4.1 Detached menus . 26
2.4.2 Assigning variables in “Window” mode . 27
2.4.3 Actions and Buttons in “Window” mode . 28
2.4.4 Help file structure . 28

2.5 Interacting with the Operating System . 29
2.5.1 File Operations . 29
2.5.2 SYSTEM Command: Unix-like operating system 30

2.6 Customizing . 30
2.6.1 Logical Names . 30
2.6.2 User Defined Commands . 30
2.6.3 Initialization File . 30
2.6.4 The SIC Command . 31

CONTENTS 3

3 Running Tasks 32
3.1 Window Mode . 32
3.2 Query Mode . 32
3.3 EDIT Mode . 34
3.4 Specifying the .init File . 35
3.5 Errors and Aborting . 35
3.6 Log Files . 35
3.7 Synchronizing Jobs . 36
3.8 Obtaining Explanations: HELP RUN TaskName Command 36

4 SIC Programming Manual 37

5 SIC Language Internal Help 37
5.1 Language . 37
5.2 ACCEPT . 38

5.2.1 ACCEPT /ARRAY . 38
5.2.2 ACCEPT /BINARY . 38
5.2.3 ACCEPT /COLUMN . 38
5.2.4 ACCEPT /FORMAT . 40
5.2.5 ACCEPT /LINE . 40
5.2.6 ACCEPT Excel . 40

5.3 BEGIN . 41
5.4 BREAK . 41
5.5 COMPUTE . 41

5.5.1 COMPUTE DATE . 43
5.5.2 COMPUTE DIMOF . 43
5.5.3 COMPUTE FFT . 43
5.5.4 COMPUTE FOURT . 44
5.5.5 COMPUTE GATHER . 44
5.5.6 COMPUTE GAG DATE . 44
5.5.7 COMPUTE HISTOGRAM . 44
5.5.8 COMPUTE IS A SIC VAR . 45
5.5.9 COMPUTE LINES . 45
5.5.10 COMPUTE LOCATION . 45
5.5.11 COMPUTE RANKORDER . 46
5.5.12 COMPUTE INTEGRAL . 46
5.5.13 COMPUTE DERIVATIVE . 46
5.5.14 COMPUTE BTEST . 46

5.6 CONTINUE . 47
5.7 DATETIME . 48

5.7.1 DATETIME /FROM . 48
5.7.2 DATETIME /TO . 49

5.8 DEFINE . 50
5.8.1 DEFINE ALIAS . 50
5.8.2 DEFINE CHARACTER . 50
5.8.3 DEFINE COMMAND . 51
5.8.4 DEFINE DOUBLE . 51
5.8.5 DEFINE FITS . 52

CONTENTS 4

5.8.6 DEFINE FUNCTION . 53
5.8.7 DEFINE HEADER . 53
5.8.8 DEFINE IMAGE . 54
5.8.9 DEFINE INTEGER . 55
5.8.10 DEFINE LANGUAGE . 55
5.8.11 DEFINE LOGICAL . 55
5.8.12 DEFINE REAL . 55
5.8.13 DEFINE STRUCTURE . 56
5.8.14 DEFINE TABLE . 56
5.8.15 DEFINE UVTABLE . 56
5.8.16 DEFINE /GLOBAL . 57
5.8.17 DEFINE /LIKE . 57
5.8.18 DEFINE /TRIM . 57

5.9 DELETE . 58
5.10 DIFF . 58
5.11 EDIT . 58
5.12 ELSE . 59
5.13 END . 59
5.14 EXECUTE . 59
5.15 EXAMINE . 60

5.15.1 EXAMINE /SAVE . 61
5.16 EXIT . 61
5.17 FOR . 61

5.17.1 FOR Indexed . 62
5.17.2 FOR /IN . 62
5.17.3 FOR /WHILE . 63

5.18 HELP . 63
5.19 IF . 64
5.20 IMPORT . 64
5.21 LET . 65

5.21.1 LET Free Syntax . 66
5.21.2 LET GUI Widget . 66
5.21.3 LET Structure . 67
5.21.4 LET /CHOICE . 67
5.21.5 LET /FILE . 67
5.21.6 LET /FORMAT . 68
5.21.7 LET /FORMULA . 68
5.21.8 LET /INDEX . 68
5.21.9 LET /LOWER . 68
5.21.10 LET /NEW . 68
5.21.11 LET /PROMPT . 69
5.21.12 LET /RANGE . 69
5.21.13 LET /REPLACE . 69
5.21.14 LET /RESIZE . 69
5.21.15 LET /SEXAGESIMAL . 70
5.21.16 LET /STATUS . 70
5.21.17 LET /UPPER . 70

CONTENTS 5

5.21.18 LET /WHERE . 70
5.22 MESSAGE . 71
5.23 MFIT . 72

5.23.1 MFIT /EPSILON . 73
5.23.2 MFIT /METHOD . 73
5.23.3 MFIT /QUIET . 74
5.23.4 MFIT /START . 74
5.23.5 MFIT /STEP . 74

5.24 MODIFY . 74
5.25 NEXT . 74
5.26 ON . 75

5.26.1 ON ERROR . 75
5.27 PARSE . 75
5.28 PAUSE . 76
5.29 PYTHON . 77
5.30 QUIT . 78
5.31 RECALL . 78
5.32 RETURN . 78
5.33 SAY . 79

5.33.1 SAY /FORMAT . 80
5.33.2 SAY /NOADVANCE . 82

5.34 SIC . 82
5.34.1 SIC FileSystem . 82
5.34.2 SIC Procedure . 83
5.34.3 SIC Customize . 83
5.34.4 SIC Command . 83
5.34.5 SIC Miscellaneous . 83
5.34.6 SIC APPEND . 84
5.34.7 SIC BEEP . 84
5.34.8 SIC CPU . 84
5.34.9 SIC DATE . 84
5.34.10 SIC DEBUG . 85
5.34.11 SIC COPY . 86
5.34.12 SIC DELAY . 86
5.34.13 SIC DELETE . 87
5.34.14 SIC DIRECTORY . 87
5.34.15 SIC EDIT . 87
5.34.16 SIC ERROR . 87
5.34.17 SIC EXPAND . 87
5.34.18 SIC EXTENSION . 88
5.34.19 SIC FIND . 88
5.34.20 SIC FLUSH . 88
5.34.21 SIC GREP . 88
5.34.22 SIC HELP . 88
5.34.23 SIC INTEGER . 89
5.34.24 SIC LANGUAGE . 89
5.34.25 SIC LOCK . 89

CONTENTS 6

5.34.26 SIC LOGICAL . 89
5.34.27 SIC MACRO . 90
5.34.28 SIC MEMORY . 90
5.34.29 SIC MESSAGE . 90
5.34.30 SIC /COLOR . 93
5.34.31 SIC MKDIR . 93
5.34.32 SIC MODIFIED . 93
5.34.33 SIC OUTPUT . 94
5.34.34 SIC PARALLEL . 94
5.34.35 SIC PARSE . 94
5.34.36 SIC PRECISION . 95
5.34.37 SIC PRIORITY . 95
5.34.38 SIC RANDOM SEED . 95
5.34.39 SIC RENAME . 96
5.34.40 SIC SAVE . 96
5.34.41 SIC SEARCH . 97
5.34.42 SIC SYNTAX . 97
5.34.43 SIC SYSTEM . 98
5.34.44 SIC TIMER . 98
5.34.45 SIC USER . 99
5.34.46 SIC UVT VERSION . 99
5.34.47 SIC VERIFY . 99
5.34.48 SIC VERSION . 100
5.34.49 SIC WAIT . 100
5.34.50 SIC WHICH . 100
5.34.51 SIC WINDOW . 100

5.35 SORT . 101
5.36 SYMBOL . 101
5.37 SYSTEM . 102
5.38 TIMER . 102
5.39 TYPE . 103
5.40 @ . 103

5.40.1 @ ARGUMENTS . 104

6 GUI Language Internal Help 104
6.1 Language . 104
6.2 BUTTON . 105
6.3 END . 105
6.4 GO . 105
6.5 MENU . 105
6.6 SUBMENU . 106
6.7 PANEL . 106
6.8 WAIT . 106
6.9 URI . 107

CONTENTS 7

7 VECTOR Language Internal Help 107
7.1 Language . 107
7.2 FITS . 107

7.2.1 FITS FROM . 107
7.2.2 FITS TO . 108
7.2.3 FITS /BITS . 108
7.2.4 FITS /STYLE . 109

7.3 HEADER . 109
7.3.1 HEADER /TELESCOPE . 110

7.4 RUN . 110
7.5 SPY . 112
7.6 SUBMIT . 112
7.7 TRANSPOSE . 112

8 TASK Language Internal Help 113
8.1 Language . 113
8.2 CHARACTER . 113
8.3 FILE . 113
8.4 GO . 113
8.5 INTEGER . 114
8.6 LOGICAL . 114
8.7 MORE . 114
8.8 REAL . 114
8.9 VALUES . 115
8.10 WRITE . 115

9 ADJUST Language Internal Help 115
9.1 Language . 115
9.2 ADJUST . 115

9.2.1 ADJUST Example . 116
9.2.2 ADJUST /EPSILON . 117
9.2.3 ADJUST /METHOD . 117
9.2.4 ADJUST /START . 118
9.2.5 ADJUST /STEP . 118
9.2.6 ADJUST /PARAMETER . 118
9.2.7 ADJUST /QUIET . 118
9.2.8 ADJUST /WEIGHTS . 118
9.2.9 ADJUST /BOUNDS . 118

9.3 EMCEE . 119
9.3.1 EMCEE Caution . 119
9.3.2 EMCEE Credits . 120
9.3.3 EMCEE Example . 120
9.3.4 EMCEE /BEGIN . 121
9.3.5 EMCEE /BOUNDS . 121
9.3.6 EMCEE /LENGTH . 121
9.3.7 EMCEE /PARAMETERS . 121
9.3.8 EMCEE /ROOT NAME . 122
9.3.9 EMCEE /START . 122

CONTENTS 8

9.3.10 EMCEE /STEP . 122
9.3.11 EMCEE /WALKERS . 122

9.4 ESHOW . 123
9.4.1 ESHOW AUTOCORR . 123
9.4.2 ESHOW CHAINS . 123
9.4.3 ESHOW ERRORS . 123
9.4.4 ESHOW RESULTS . 123
9.4.5 ESHOW TRIANGLES . 124
9.4.6 ESHOW /BURN . 124
9.4.7 ESHOW /SPLIT . 124

10 SIC Error Messages and Recovery Procedures 124
10.1 A through C . 126
10.2 D . 126
10.3 E . 129
10.4 F . 130
10.5 G . 132
10.6 H . 132
10.7 I . 132
10.8 J trough L . 134
10.9 M . 135
10.10O through R . 138
10.11S . 139
10.12T . 144
10.13U through Z . 144

11 Task demonstration 146
11.1 demo . 146
11.2 EXAMPLE . 146
11.3 PRIMES . 146

1 INTRODUCTION 9

1 Introduction

sic (*) is a command line interpretor, written in FORTRAN and callable as a subroutine by any
program. It provides a command language with the following major features:

• resolution of command abbreviations

• definition of symbols

• procedures with arguments substitution during execution

• log file

• multi-language structure

• loop buffers for repetitive actions

• variables, arithmetic and logical expressions evaluation

• structured logical tests

• error recovery

• stack buffer

• keypad editing of command lines

• Graphic User Interface (widgets) using simple scripts

This manual contains several chapters. Chapter 2 (The SIC monitor) should be read by every
user before using sic. Chapter 3 contains a copy of the internal help files of sic. Chapter 4 is a
list of all possible sic error messages and of their most usual recovery procedures. This reference
may be useful if you encounter an error message which you do not understand while running sic.

2 THE SIC MONITOR 10

2 The SIC Monitor

2.1 Basic Features

2.1.1 Syntax

All commands parsed by SIC must have the following syntax:
[LANG\]COMM [ARG1 [ARG2 [...]]] [/OPT1 [ARG11 [...]] [/OPT2 [...]]

Where LANG is the language name, COMM the command name, OPT1 and OPT2 are option names,
ARGs are the arguments of command and options, and brackets indicate optional fields.

The language, command and option names can be abbreviated and sic checks for ambiguities.
Arguments are separated by any number of separators (Spaces or Tabs). An option is a word
beginning with a Slash. The options, like the commands, may have arguments. The syntax
analyzer converts to upper case letters, strips useless separators, translate the symbols (See 2.1.7,
expands the command and option names by looking through its current “dictionary”.

The language field is optional. If present, it restricts the resolution of command name ab-
breviations to all languages of which it is an abbreviation. Otherwise, all languages are searched
for.

The first action of the syntax analyzer is to suppress redundant separators. This is of course
not always wanted (e.g. a figure caption) and sic offers one way to circumvent this problem:
the so-called strings, which are arguments included between double quotes ("). Strings are not
modified by the syntax analyzer, but the outer double quotes will be ignored when the argument
is used. However, strings are not protected against symbol substitution.

The program calling sic may expect arguments of various types: character strings, real num-
bers, integers or logicals. For a specified type, e.g. a real number, the argument can be either a
constant value (e.g. 3.14159), a variable (e.g. PI), or an expression (e.g. 2*ASIN(-1.0)). Conver-
sion to the specified type is done automatically if possible at all (See command SIC PRECISION
in 2.6.4).

A “-” sign as the last significant character in a command line indicates that a continuation
follows on the next line, e.g.

SIC> HELP -
SIC> EDIT

is interpreted as

SIC> HELP EDIT

No special procedure is used to cut strings for continuation lines. It is simply done according
to the following example

SIC> LABEL "A very long-
SIC> string must be cut"

which is interpreted as

SIC> LABEL "A very long string must be cut"

Comments may appear at the end of any line. The comment area starts with a “!” sign; all
the following text is ignored. Comments can be used in conjunction with the continuation mark
:

2 THE SIC MONITOR 11

SIC> DRAW RELOCATE 13- !This is an example of comments
SIC> .45 15.00 /USER ! and continuation

is interpreted as

SIC> DRAW RELOCATE 13.45 15.00 /USER

BUT do not try this one

SIC> LABEL "A lon- ! A long string
SIC> g caption" ! with continuation mark

which produces the message

E-INTER, Unbalanced quote count

immediately after the first line as been typed in, because the syntax analyzer was considering
the - and ! signs as part of a string. Comments may be convenient to self-document complex
procedures.

2.1.2 The Prompt

The prompt is defined by the calling program. In addition, sic modifies the prompt aspect
according to the execution level. In this example the calling program is assumed to pass the
string ’GAG’ to sic. Then the following prompts may appear :

GAG> ! Lowest execution level
GAG_3> ! Third execution level
GAG_5: ! Compile mode for the Loop buffer at level 5

2.1.3 The on-line HELP

The HELP utility of sic is structured at three different levels. Without an argument, HELP gives
the list of available help. Since sic is a multi-language system, HELP Language Name\ prints
one line description of all commands of the named language. For example, HELP SIC\ gives a
one line description of all the sic monitor commands. HELP Command Name prints more detailed
information on that command. For some command, the help text is divided in subtopics which
can be accessed by typing HELP Command Name Subtopic.

If you consult a long HELP text, you may use the PAGE mode. You will then be prompted for
continuation when the screen is full. The page mode is usually set by default on “intelligent”
terminals, and you can switch between PAGE and SCROLL mode for the help using command

SIC> SIC HELP PAGE or SIC HELP SCROLL

On-line access to the documentation can be obtained by

SIC> SIC HELP CONTENT or SIC HELP INDEX

In CONTENT mode, HELP Command displays the documentation page indicated for the specified
Command by the table of content, while in INDEX mode, the first page indicated in the index is
displayed.

2 THE SIC MONITOR 12

2.1.4 The Stack

The Stack is an internal buffer where commands are automatically placed. It may be considered
as a real time logfile, from which you can retrieve commands. The stack buffer is organized as
a circulating buffer, with a "first in - first out" replacement procedure when the buffer
is full, or when the maximum number of commands is reached. The command number always
increase, even when the buffer fills up.

The command

RECALL [Arg]

recalls command from the stack for execution. Depending on whether line editing mode is possible
(see keypad line editing), the recalled command may be edited prior to submission, or not. If
no argument is present, the last command is recalled. If the argument is a number N, the N-th
command of the stack is recalled. If the argument is a string, the stack is scanned backwards to
find a command beginning by this string.

If line editing is possible, commands may also be retrieved from the stack using the Up and
Down arrows on the terminal keyboard a documenter plus correctement.

The command

EDIT

without arguments will dump the stack on a file named stack.DefExt (where DefExt is the
current default procedure extension), and calls the default editor to edit this file. It can then be
executed as any other procedure.

2.1.5 Line Editing Facility

Line editing is normally available to edit command lines prior to submission. The following
control keys can be used

<^A> Move to beginning of line
<^B> Backspace one character (BACKWARD)
<^F> Advance one character (FORWARD)
<^H> Delete previous character (BACKSPACE)
<^J> Delete to beginning of word, or previous word
<^M> Submit command line (RETURN key)
<^N> Recover Next command
<^P> Recover Previous command
<^U> Delete to beginning of line
 Delete previous character

These commands are identical to the standard line editing in the Emacs editor.
SG: Is it still valid? If you are using an ANSII compatible terminal (VT100 series and

upwards), the numeric keypad is also available to perform additional actions

<PF4> Delete to end of line
<-> Delete to end of word, or next word
<LF> Delete to beginning of word, or previous word
<,> Delete character
 Delete previous character

2 THE SIC MONITOR 13

<1> Move to next word
<2> Move to end of line
<4> Set advance mode (for WORD moves)
<5> Set backup mode (for WORD moves)
<ENTER> Submit the command line
<RETURN> Same as above
<Up Arrow> Retrieve previous command of Stack
<Down Arrow> Retrieve next command of Stack
<Left Arrow> Backward one character
<Right Arrow> Advance one character

For lines longer than the screen width, the display uses a window and automatically centers
it on the current character when the cursor position reaches one end.

SG: Is that still true? The keypad editing mode can be turned off by the SIC EDIT OFF
command and turned on by the SIC EDIT ON command. Line editing mode affects the error
recovery system and the RECALL command.

2.1.6 The Log File

The Log File is a post-mortem listing of all commands issued and successfully executed during
a working session. It is kept on leaving sic (by using EXIT). Some commands like HELP are not
put into the Log File. Most programs using sic put the Log File in the GAG LOG: area (usually
your default directory, but see “Customizing”) to avoid multiplication of files in a directory tree,
and purge it upon exit keeping the last two or three versions. Log Files can be used as the basis
of subsequent procedures. If you are short of disk space, purge and delete yourself the log files.

2.1.7 Symbols

sic allows the user to define symbols, which are abbreviations of any character string. Any
command line is first parsed for symbols in the symbol table. The command interpretor assumes
that the following entities may be symbols :

• the first word of command line (e.g. AA in command AA /OPTION)

• any string (without spaces) included between single quotes (e.g. ’AA’). This syntax may
also indicate a character variable (See “Character Variables and Implicit Formatting”).

There is no recursive analysis of the line for the symbol translation. Note that, contrary to
character variables, the symbol translation occurs even within strings, and that case does not
matter.

Symbols are defined by issuing the following command

SIC> SYMBOL TOTO "Whatever you want"

A symbol definition may refer to an other already defined symbol. Whenever ’TOTO’ is found in
a command line, it will be replaced by the string Whatever you want e.g.

SIC> LABEL "Units ’TOTO’"

will be interpreted as

SIC> LABEL "Units Whatever you want"

2 THE SIC MONITOR 14

The Symbol Table can be listed using command SYMBOL without arguments. If SYMBOL has
a symbol name for argument, the translation of this symbol is given. DELETE /SYMBOL TOTO
will delete symbol TOTO from the current symbol table. Note that symbols should only include
alphanumeric characters.

2.2 Variables and Expressions

Most of the power of sic comes from its ability to handle variables and perform operations
(arithmetic or logical) on them. When used in combination with the greg program for display,
sic variables can be used to performed efficient data analysis.

2.2.1 Definitions and Assignments

sic supports variables and arithmetic or logical expressions evaluation. Variables can be de-
fined either by the program or by the user. Program-defined variables may have the Read-Only
attribute which prevents them from being overwritten by the user (see sic PROGRAMMING
MANUAL). Variable names are up to 64 characters long, case insensitive, and must begin with
a letter. A variable can be LOCAL or GLOBAL. GLOBAL variables are valid at any execution
level in sic. On the opposite, LOCAL variables are valid only in the procedure where they have
been declared, or in any loop started within this procedure, or in any interactive level gener-
ated from this procedure (by a PAUSE or an error). Variables declared by a program are always
GLOBAL.

Arithmetic and logical expressions are automatically evaluated when used as arguments to
commands. The evaluation is done in single or double precision arithmetic, according to command
SIC PRECISION. Parentheses are allowed, but there is a limit on the complexity of arithmetic
and logical expressions. A local variable has precedence over a global variable of the same name.
Local variables are deleted when the creating procedure terminates.

Variables may be defined using command DEFINE, and assigned values using command LET.
sic is a declarative language in which all variables must be defined before being used. For
convenience, command LET has an option /NEW which allows declaration of the assigned variable.
Five type of variables are allowed : REAL, INTEGER, LOGICAL, DOUBLE (for double precision real
variables), and CHARACTER.

Variable values may be typed using the EXAMINE command, which also indicates whether the
variable is GLOBAL or LOCAL, and in the latter case, the corresponding procedure level.

2.2.2 Functions and Operators

For arithmetic expressions, the known operators are

- Subtraction
+ Addition
* Multiplication
/ or | Division (the | sign has been added because the /

is the option separator)
** or ^ Exponentiation

Known single argument functions are

2 THE SIC MONITOR 15

ABS Absolute value
ACOS Arc Cosine
ASIN Arc Sinus
ATAN Arc Tangent
COS Cosine
COSH Hyperbolic Cosine
EXP Exponential
INT Integer Part
LOG Natural logarithm
LOG10 Decimal Logarithm
NINT Nearest Integer
FLOOR Integer floor
CEILING Integer ceiling
SIN Sinus
SINH Hyperbolic Sinus
SQRT Square Root
TAN Tangent
TANH Hyperbolic Tangent

Known two arguments functions are

ATAN2 Arc tangent with two arguments
MAX Maximum of two values
MIN Minimum of two values
MOD Modulo (true modulo, even for negative numbers)
SIGN Sign transfer

For logical expressions, the operators are

.OR. .AND. .NOT.

.GT. .GE. .LT. .LE.

.NE. .EQ.

Note that there must be no blanks in the logical expressions.
The known functions are

EXIST Returns .TRUE. if its argument is a defined variable
FILE Returns .TRUE. if its argument is an existing file.

Additional arithmetic functions may be declared by the calling programs. Two special functions
are always declared :

NOISE(x) Gaussian Noise of Sigma X
RANDOM(x) Random Number between 0 and X

These additional functions, and their number of arguments, can be listed using command
EXAMINE /FUNCTION.

2 THE SIC MONITOR 16

2.2.3 Vector Operations

sic supports array variables of up to 7 dimensions. Array dimensions are specified between
brackets (not parentheses) with the comma as separators. CHARACTER and LOGICAL variables can
also be arrays. Arithmetic operations always work on arrays on an element by element basis.
Scalar variables are considered like arrays of any size. For example,

DEFINE REAL A[5] B[5]
LET A = ABS(B)
LET B = 1.0

assigns to each element of A the absolute value of the corresponding element of B, and then
assigns to each element of B the value 1.0. Dimensions of arrays must match in arithmetic
expressions.

Any subset of an array variable can be referenced in an expression, for example

DEFINE REAL A[5] B[5,10] C[5,10,3]
LET B[,6] = A
LET C[,10,1] = B[,3]

Dimensions of the sub-arrays must also match. Transposition is now supported : e.g. in the
precedent example, C[1,,1] could have replaced C[,10,1]. The indices can be previously defined
scalar variables. Leading commas may be omitted.

DEFINE REAL A[5] B[5,10] C[5,10,3]
LET B[,6] = A
LET C[,10,1] = B[,3]

It is also possible to specify a range of indexes rather than a single index.

DEFINE REAL A[5] B[3,10] C[4,4,4]
LET B[,6] = A[2:4]
LET A[:3] = B[,8]
LET A[2:5] = C[3,,4]

2.2.4 Implicit Loops

It is sometimes convenient to assign to an array values which are functions of the array indices.
This can be done using “implicit loops”, such as

DEFINE REAL A[10,10]
LET A[I,J] = EXP(-((I-5)|2)**2-((J-6)|3)**2)

in which I and J have NOT been declared as known variables. I and J are known as “implicit
variables”. The preceding expression is equivalent to the following commands

DEFINE REAL A[10,10]
FOR J 1 TO 10
FOR I 1 TO 10
LET A[I,J] = EXP(-((I-5)|2)**2-((J-6)|3)**2)
NEXT
NEXT

but it executes thousands of times faster... Mixing of implicit and declared (or loop) variables is
strictly forbidden at present. It can usually be avoided by using intermediate arrays.

2 THE SIC MONITOR 17

2.2.5 Conditional Assignment

Another convenient function is to assign to an array new values only in for some parts of the
array, based on a logical mask or logical expression. The option /WHERE of command LET allows
such operations. For example

DEFINE REAL A[10,10]
LET A[I,J] = EXP(-((I-5)|2)**2-((J-6)|3)**2) /WHERE (I+J).LT.10

will set only a part of the A array (note that I and J are “implicit variables”).
The preceding expression is equivalent to the following commands

DEFINE REAL A[10,10]
FOR J 1 TO 10
FOR I 1 TO 10

IF (I+J).LT.10 THEN
LET A[I,J] = EXP(-((I-5)|2)**2-((J-6)|3)**2)

ENDIF
NEXT
NEXT

but it executes thousands of times faster...
Conditional assignment can be mixed with implicit loops, as shown above, but there are some

syntax restrictions: please refer to the internal help for more details.

2.2.6 Size casting

Typing the explicit dimensions when declaring a new variable may be tedious. SIC allows to
create arrays of dimensions identical to those of existing variables through the /LIKE option. For
example, if A is an existing integer variable of dimensions 10,5,30 the following command

DEFINE REAL B C D /LIKE A

is equivalent to

DEFINE REAL B[10,5,30] C[10,5,30] D[10,5,30]

and defines three real arrays of dimension [10,5,30]. This feature, called size casting, is specially
convenient to declare arrays that match images (see below).

2.2.7 GILDAS Images

Variables are normally allocated using virtual memory, and hence are lost once the program
terminates. It is possible to allocate variables as disk files, called Images, which are mapped
into the virtual memory of the program, using command

DEFINE IMAGE Variable File Keyword

where

Variable is the desired variable name. This variable name should be at most 3 characters to
hold the header variables.

2 THE SIC MONITOR 18

File is the name of the file holding the image. Default extension is .gdf (gildas Data Format),
but any extension is valid.

Keyword indicates how the file must be used and may be

READ use an existing image as Read-Only variable

WRITE use an existing image as Read-Write variable. The user must have Write access to
the file.

EXTEND Allows to extend the last dimension of an existing image. The user must have
write access to it.

REAL create a new image of type REAL

DOUBLE create a new image of type DOUBLE

INTEGER create a new image of type INTEGER.

For already existing images (READ, WRITE), the type and size of variable are determined by the
program. For new images, the size must be specified in the variable name, and the variable is
always declared as Read-Write. To EXTEND image, the new value of the last dimension must be
specified in the variable name. Header variables (see next section) are defined with the same
status (Read or Write) as the image.

Images (i.e. files in the gildas data format) are used by most programs distributed by the
Groupe d’Astrophysique. See the gildas (Grenoble Image and Line Data Analysis Software)
documentation. Tables usually refer to images with 2 dimensions, but more generally to images
which do not define a coordinate system.

The DEFINE IMAGE command has two variants, DEFINE TABLE and DEFINE HEADER.
DEFINE TABLE only defines a single variable pointing to the image content. On the opposite
DEFINE HEADER defines only the header variables, as described in next section.

2.2.8 GILDAS Headers

The DEFINE IMAGE command allows sic to access not only to the content of an image (the
data value), but also to all its associated parameters; DEFINE HEADER allows access only to these
associated parameters. The header variables have names derived from the generic name by adding
the special character % and an extension (such as e.g. NDIM for the number of dimensions) to the
generic header name. For example, command DEFINE HEADER VAR file.gdf READ also creates
the following variables:

VAR%GENE Integer Length of general section
VAR%NDIM Integer Number of dimensions (ReadOnly)
VAR%DIM Integer[7] Dimensions (ReadOnly)
VAR%CONVERT Double[3,7] Conversion formulae for the 7 axes:

Reference pixel,
Value at reference pixel,
Increment

VAR%BLAN Integer Length of blanking section
VAR%BLANK Real[2] Blanking and tolerance
VAR%EXTREMA Integer Length of extrema section
VAR%MAX Real Maximum
VAR%MIN Real Minimum

2 THE SIC MONITOR 19

VAR%MINLOC Integer[7] Position of min value
VAR%MAXLOC Integer[7] Position of max value
VAR%DESC Integer Length of units and system section
VAR%UNIT Char*12 Image unit
VAR%UNIT1 Char*12 First axis type
VAR%UNIT2 Char*12 Second axis type
VAR%UNIT3 Char*12 Third axis type
VAR%UNIT4 Char*12 Fourth axis type
VAR%SYSTEM Char*12 Coordinate system
VAR%POSI Integer Length of position section
VAR%SOURCE Char*12 Source name
VAR%RA Double Right Ascension
VAR%DEC Double Declination
VAR%LII Double Galactic longitude
VAR%BII Double Galactic latitude
VAR%EQUINOX Real Equinox of coordinates
VAR%PROJ Integer Length of projection section
VAR%PTYPE Integer Projection type (code)
VAR%A0 Double first coordinate of projection center
VAR%D0 Double second coordinate of projection center
VAR%ANGLE Double position angle of projection
VAR%X_AXIS Integer First projected axis
VAR%Y_AXIS Integer Second projected axis
VAR%SPEC Integer Length of spectroscopy section
VAR%LINE Char*12 Line name
VAR%FREQRES Double Frequency resolution
VAR%IMAGFRE Double Image Frequency
VAR%RESTFRE Double Rest Frequency
VAR%VELRES Real Velocity resolution
VAR%VELOFF Real Velocity offset
VAR%F_AXIS Integer Frequency/Velocity axis
VAR%BEAM Integer Length of beam section
VAR%MAJOR Real Major axis of beam
VAR%MINOR Real Minor axis of beam
VAR%PA Real Position angle of beam
VAR%SIGMA Integer Noise section length
VAR%NOISE Real Theoretical noise
VAR%RMS Real Actual noise
VAR%PROPER Integer Proper motion section length
VAR%MU Real[2] along RA and DEC, in mas/yr
VAR%PARALLAX Real Parallax in mas

In addition, the following variables are also created when accessing gildas UV Tables through
the DEFINE UVTABLE command:

VAR%NCHAN Integer Number of channels
VAR%NVISI Integer Number of visibilities
VAR%NSTOKES Integer Number of Stokes parameters
VAR%NATOM Integer Complex visibility size

2 THE SIC MONITOR 20

VAR%BASEMIN Real Minimum baseline
VAR%BASEMAX Real Maximum baseline

VAR becomes a dummy variable of type header, which can only be referenced in a further
DELETE /VARIABLE command. The VAR%item variables are ReadOnly or ReadWrite according to
the keyword following the filename, except for the dimension variables (VAR%DIM and VAR%NDIM),
which cannot be modified. VAR%READONLY indicates whether the variable can be modified or not.

Full headers can be copied to one another, using the command

LET A% = B%

which copies the header of image B into that of image A (dimensions are not modified, however).
Thus a full copy of a 4 dimensions gildas data file can be obtained within sic as follows:

DEFINE IMAGE A Oldfile.gdf READ
DEFINE INTEGER N1 N2 N3 N4
LET N1 A%DIM[1]
LET N2 A%DIM[2]
LET N3 A%DIM[3]
LET N4 A%DIM[4]
DEFINE IMAGE B[N1,N2,N3,N4] Newfile.gdf REAL
LET B A ! Copy A data into B
LET B% A% ! Copy A header into B header
DELETE /VARIABLE B ! Deletes the SIC variables, but not the file...

A simpler (and more generic) way to declare new images is to use the size casting provided by
the /LIKE option:

DEFINE IMAGE A Oldfile.gdf READ
DEFINE IMAGE B Newfile.gdf REAL /LIKE A ! Define B like A...
LET B A ! Copy A data into B
LET B% A% ! Copy A header into B header
DELETE /VARIABLE B ! Deletes the SIC variables, but not the file...

2.2.9 Structures

sic variables can also be structures, which are related ensembles of variables similar to the derived
types in Fortran-90. The naming conventions follows the Fortran-90, with structure elements
separated by the % sign.

A structure is defined by

DEFINE STRUCTURE A

and any element then by

DEFINE REAL A%B

Sub-structures can be defined, too

DEFINE STRUCTURE A%C
DEFINE REAL A%C%E

An entire structure (e.g. A as above) and all its element can be deleted using

DELETE /VAR A

Structures can be assigned as a whole by command LET. This command will copy all elements
of the same name, and leave the others untouched. HEADERs are actually special structures.

2 THE SIC MONITOR 21

2.2.10 Character Variables and Implicit Formatting

In contrast with the Symbols, which are substituted in the command line before the parsing,
variables and expressions are evaluated after the command line analysis. In general, a real (resp.
integer and logical) argument is considered as a mathematical (logical) expression and evaluated
when read by the program calling sic. The command line stored in the stack and logfile contains
the mathematic expression, not the current value.

The behaviour for Character variables is slightly different, in the sense that only items in-
cluded between single quotes are considered as possible character variables, if they have not yet
been expanded as known symbols of course. Using character variables in logical expressions is
an exception to this rule because translation should be avoided in this case, see next chapter.
Contrary to Symbols, Character variables translation does not occur in strings.

Not only Character variables but also any mathematical and logical expression may be in-
cluded between quotes. Mathematical expressions are evaluated and formatted using the shortest
possible format. Logical expressions are evaluated as YES or NO. The formatted command string
is substituted to the expression and quotes, and used in the string returned as character argu-
ment to a command. This feature is known as “Implicit Formatting”. In this way, non-character
variables and expressions can be used where a character argument is required. The reverse is not
true however: Implicit Formatting should not be used if a non-character argument is expected.

Any variable can be typed using the EXAMINE command which will display the variable name
followed by its current value. More than one variable may be displayed at the same time using
the SAY command.

Concatenation of variables is easily obtained by mixing explicit strings (between double-
quotes) and implicitely formatted variables. For example, is A is character variable of content ”I
am”, the following command

LET B "You know "’A’" happy"

attributes to B the content ”You know I am happy”.

2.2.11 Initializing variables from external files

sic allows easy initialization of variable from files in “foreign” format (i.e. not gildas images).
This can be done with the ACCEPT command, which allows reading variables from formatted or
unformatted files. This command is available in 3 major modes

• ACCEPT /ARRAY
ACCEPT Var /ARRAY File [/FORMAT String] [/LINE Begin [End]]
reads in free format or user specified format variable Var from file File, selecting a line
range if specified. Var may have up to 4 dimensions.

• ACCEPT /BINARY
ACCEPT Var /BINARY File [Skip]
reads the binary file File to set variable Var. Skip is a number of BYTEs to skip before
reading. Note that there is no type conversion in this command: the binary content of the
file must match the type declared for the variable.

• ACCEPT /COLUMN
ACCEPT V1 [V2 [...]] /COLUMN File [/FORMAT String] [/LINE Begin [End]]
reads the formatted file File to set one or several 1-dimensional variables V1 V2 Free

2 THE SIC MONITOR 22

format is used by default, unless the /FORMAT option is specified. The special argument *
can be used instead of the variable name to indicate a “dummy” variable, which is read
from the file, but not assigned. This allows to skip a column in the input file.

2.3 SIC as a programming language

The second most important power of the SIC command language is its programming features.
SIC supports command procedures, loops and conditional execution of statements in procedures.

2.3.1 Procedures (or Command Files)

sic has command procedure capabilities. A procedure is an external file containing valid com-
mands. The sic variables PRO%NARG (number of arguments) and PRO%ARG[:] (arguments
as an array of character strings) can be accessed from within the procedure; they describe the
arguments passed to the procedure when it was invoked. The tokens &1, &2, ..., &8 can also be
used in the body of the procedure, its arguments will be substituted for these tokens. Substitution
occurs also within the character strings. A procedure is executed by

SIC> @ Procedure_Name [P1 ... PN]

Commands are read from the file Procedure Name (with a default extension depending on
the calling program or the user) and executed. P1 is a parameter string to be evaluated from
PRO%ARG[1] or substituted to the token &1 during execution. Up to 32 parameters may be
passed to the procedure. The commands are echoed to the user’s terminal if the VERIFY switch is
set ON. Most programs using sic define a default procedure extension equal to the program name
(such as .greg .class, etc...). If not specified, the default macro extension is .pro. It can
be listed and changed using command SIC EXTENSION.

Procedures (or any text file indeed) can be typed from within sic using the command TYPE.

SIC> TYPE Procedure_Name

If no argument is given to TYPE, the stack buffer is listed.

2.3.2 Loops

FOR Variable List

opens a FOR-NEXT loop to be executed for values given in the list.
This command may have the following format :

FOR I n1 n2 n3 to n4 by n5 n6 to n7

where I is the loop variable name. Loop variables must not be previously defined, and are
undefined when the loop execution is finished. The prompt changes to ’SIC n: ’, where n is
the current sic execution level, and all subsequent commands until NEXT are the body of the loop.
The loop variable can be used as any other sic variable, e.g. in arithmetic expressions such as
EXP(-(I+3.5)**2). In addition, it can be used in a formatted way when it is included between
quotes, e.g. in NAME.EXT.’I’. In this case, the substitution occurs also within the character
strings (see “Implicit Formatting”). The commands are echoed to the user’s terminal if the
VERIFY switch is set ON.

Up to 127 loop, procedure or IF block levels can be nested, and there is no restriction upon
the loop and procedure nesting, e.g.

2 THE SIC MONITOR 23

SIC> FOR I List1
SIC> FOR J List2
SIC> ..
SIC> NEXT
SIC> FOR J List3
SIC> ...
SIC> NEXT
SIC> NEXT

is perfectly valid.

FOR /WHILE Logical_Expression

This is another possible syntax for FOR-NEXT loops. The loop is executed conditionally provided
“Logical Expression” is TRUE. “Logical Expression” must be any valid logical expression, possibly
including arithmetic sub-expressions in it.

2.3.3 Structured Programming and Logical Expressions

sic includes structured logical tests of the form (if-blocks):

IF Logical_Expression [THEN]
...

ELSE IF Logical_Expression [THEN]
...

ELSE
...

ENDIF

or of the form (if-statements):

IF Logical_Expression One_Command_Line

The if-block form is similar to FORTRAN with two differences. First, the THEN keyword is
optional. Second, ELSE and IF must be separated by at least one space or tab in the ELSE IF
command. In addition, provided the restriction on the total number of loops, procedures and IF
blocks is met, any nesting between loops, procedures and IF blocks is allowed.

Variables can appear in the logical expressions, and this is one of the most frequent use for
variables. An IF block must be complete in a procedure or loop, otherwise an error occurs.

Logical expressions may include operations on arithmetic, logical or character variables. In
logical expressions, strings (i.e. text included between double quotes) are recognized as character
constants. Character variables should not be included between single quotes, since their current
values would be substituted by sic before logical expression analysis. Arithmetic sub-expressions
are allowed.

Assuming GOOD is a character variable whose current value is "Let it be", and PI =
3.1415926535897932 (Double precision), examples of valid logical expressions are :

L = ("I am happy".EQ.GOOD) (.FALSE.)

L = ("Let it be".EQ.GOOD) (.TRUE.)

2 THE SIC MONITOR 24

L = ("I am happy".EQ."’GOOD’") (.FALSE.)
evaluated literally since GOOD is not substituted in a string

L = PI.EQ.ACOS(-1.0) (.TRUE.)

L = ’PI’.EQ.2*ASIN(1.0) (.FALSE.)
evaluated as 3.141592653589793.EQ.2*ASIN(1.0)
because of implicit formatting, one digit being lost in the
formatting because of binary to decimal conversion.

L = ("I am happy".NE.GOOD).OR.(PI.EQ.ACOS(-1.0))

But the following expressions are invalid :

L = (PI.EQ.GOOD) Variable type mismatch.

L = ("I am happy".NE.’GOOD’)
Because it is evaluated as ("I am happy".NE.Let it be).

2.3.4 Execution Level

Procedures and Loops can be nested. Hence, sic may operate at different Levels of Execution.
Commands are provided to activate some level (@, FOR), suspend (PAUSE), resume (CONTINUE)
or abort its execution (NEXT, QUIT, BREAK, RETURN). Errors occuring within a non-interactive
execution level generate a PAUSE, which returns interactive control to the user at a level im-
mediately higher. The prompt at level I changes to ’SIC I> ’ to remind the user what sic is
doing.

It is also possible to interrupt a sequence of commands (procedure or loop) by pressing <^C>
at any time. The current command is then normally completed (unless it traps the <^C> by
itself), but a PAUSE is generated when the command terminates.

Related commands :

BREAK
Aborts Loop execution without generating an error. The loop is considered to have com-
pleted successfully, and execution resumes at the command line following the NEXT com-
mand of the loop.

CONTINUE
resumes Procedure or Loop execution after a PAUSE, either explicit or generated because
of an error condition. C is always a non ambiguous abbreviation of CONTINUE, unless you
redefine it as a Symbol.

EXIT
exit from the program.

NEXT
The effect of this command depends on the context:

• If encountered while entering loop commands (during loop compilation), it ends the
loop definition and activates its execution.

2 THE SIC MONITOR 25

• If encountered during loop execution, all commands left in the loop are skipped and
loop execution starts again for next index value. This typically occurs when it is
specified as error handling (ON ERROR NEXT), or typed interactively after a PAUSE has
occured.

PAUSE
sets a break point in the Loop or a Procedure. PAUSE returns control to the user when
executed in any of the non-interactive modes (Loop and Procedures). Any valid command
can be executed while in interrupt mode. The normal execution of the interrupted level can
be resumed by typing CONTINUE. NEXT and QUIT may also be valid continuation sequences.
The PAUSE command can be followed by a character string argument which is printed
before the PAUSE becomes effective.

QUIT
If QUIT is typed after a PAUSE occured in a Procedure or Loop, the execution of the in-
terrupted procedure is aborted, and one returns to the previous level of execution. In this
case, an error condition is transmitted to the previous level to allow the user to take the
appropriate decision.

RETURN
Terminates procedure execution, and returns to the previous level of execution. An implicit
RETURN is always executed at the end of the command file. Command RETURN BASE returns
to the normal interactive level (level 0). Command RETURN ERROR returns to the previous
level of execution, but also transmit an error status to this level.

2.3.5 Error Recovery

sic has a powerful error recovery system. Every command returns to the sic monitor a status to
indicate if any error occured. If so, by default sic attempts to make a PAUSE. In an interactive
session, there is a (presumably intelligent) user to decide what to do, and who can hopefully
correct the error (a typing mistake for example) and then type CONTINUE to proceed. In a non-
interactive session (Batch or command procedure), no such intelligent decision is possible and
the PAUSE causes an Abort of the program.

If line edition is possible, the command which caused the error is automatically displayed for
correction by the user. The corrected line will be submitted whenever <RETURN> or <ENTER> keys
are pressed.

It is possible to override this default behaviour by command

ON ERROR [Other command]

After this command has been issued, any error will attempt to execute the "Other command". If
this command happens to fail, sic will try to make a PAUSE. This command can be any command
of the program, including @, CONTINUE, EXIT, NEXT. They will behave exactly has usual, except
command QUIT.

In interactive mode, the QUIT command is usually typed to abort an erroneous procedure. In
this case, it decreases the execution level by 2, and transmit an error to this new level to signal
an abnormal end of some procedure. In error recovery mode, QUIT directly transmits the error
to the previous level. It is in fact translated into RETURN ERROR.

2 THE SIC MONITOR 26

Judicious use of the ON ERROR command may enable you to make batch jobs very conveniently.
In particular, think of the behaviour of ON ERROR NEXT and ON ERROR BREAK when using loops,
and ON ERROR RETURN when using procedures.

The ON ERROR command is a local command: that means it is only valid within the procedure
which declared it (and loops executed within this procedure). However, if a PAUSE occured from
a procedure (or loop), an interactive execution of the ON ERROR command will reset the error
processing behaviour of the interrupted procedure.

2.4 The GUI (“Graphics-User-Interface”) Mode

sic provides facilities (called GUI mode) to create documented input windows (“widgets”) by
which the user can modify variables and execute pre-defined commands.

sic can create 3 types of widgets:

• Detached menus
which are menu bars created by the GUI\PANEL /DETACH command. These menus have no

associated parameters, but run in parallel with the main program. Pre-defined commands
are activated by pressing the various buttons.

• Main panel window
which is created by the GUI\PANEL command. The user can modify variables using widgets,
and execute one or several actions by pressing the appropriate buttons. The variables are
actually modified only when a button is pressed.

• Sub-panels
which are created by the GUI\BUTTON command. Such windows are associated with a

specific command, and are hidden by default. They are typically used to hold variables
which are seldom modified by the user. The variables defined in these windows and in the
main window are modified when the GO button is pressed.

User input with this system is fairly intuitive. Help is available by clicking on the help button(s)
or on the prompt area for each variable.

The following description rather concerns advanced users who want to create their own window
interfaces.

2.4.1 Detached menus

Detached menus are created using the GUI\PANEL /DETACH command. Once created, buttons
and pulldown menus can be defined within the detached menu using respectively the GUI\BUTTON
and GUI\MENU commands respectively. There are no associated variables to the detached menus.
Help is available through a Help button. The menu is mapped when the GUI\GO command is
typed.

The following procedure illustrates how to create a detach menu; it creates a menu bar with
3 pulldown menus and a help button.

!
GUI\PANEL "GRAPHIC X-Window interface" PR:GRAPHIC_SIC.HLP /DETACH
!
GUI\MENU "SIC"
GUI\BUTTON "SIC\PAUSE" PAUSE

2 THE SIC MONITOR 27

GUI\BUTTON "SIC\CONTINUE" CONTINUE
GUI\BUTTON "SIC\QUIT" QUIT
GUI\BUTTON "SIC\NEXT" NEXT
GUI\BUTTON "SIC\BREAK" BREAK
GUI\BUTTON "SIC\EXIT" "Exit"
!
GUI\MENU "Graphic"
GUI\BUTTON "DEVICE IMAGE WHITE" DEVICE
GUI\BUTTON "CLEAR PLOT" CLEAR
GUI\BUTTON "ZOOM" ZOOM
GUI\BUTTON "HARDCOPY /PRINT" HARDCOPY
GUI\MENU /CLOSE
!
GUI\MENU "Program(s)"
GUI\BUTTON "@ PR:X_WHOLE.GRAPHIC" "Interfero"
GUI\BUTTON "@ PR:X_DISPLAY.GRAPHIC" "Display"
!
GUI\GO

Several detached menus can be activated at once.

2.4.2 Assigning variables in “Window” mode

When the “Main panel window” has been created, the LET command behaves in a different way
when any of the following options is set: /PROMPT, /CHOICE, /INDEX, /RANGE, /FILE

Rather than taking the variable value from the keyboard-typed command line, the LET
command has no immediate action, but defines a widget in the “Main panel window” (or “sub-
panels”). This widget will allow the user to define the variable value using the windowing system.
5 types of widgets are available:

• Text widget
This is the default widget created when option /PROMPT is present. The content of the text

widget will be used to set the variable.

• Slider widget
This widget is activated when option /RANGE is present. The widget consists both in a

numeric area and a slider limited by the given range, and can be used to set a real or integer
variable.

• Choice widget
This widget is activated when option /CHOICE is present. The widget consists in a text

widget and a pulldown menu containing all specified choices. The user can select its choice
with this menu. If the last choice is a “*”, any other text can also be entered.

• Index widget
This widget is activated when option /INDEX is present. This widget is similar to the

Choice widget, but the returned value is an integer corresponding to the sequence number
of the selected choice.

2 THE SIC MONITOR 28

• File widget
This widget is activated when option /FILE is present. The widget consists in a text widget
and a file selection widget with the specified file filter.

The “Main panel window” is actually created with all defined widgets when command GUI\GO is
typed.

2.4.3 Actions and Buttons in “Window” mode

The “Main panel window” is created when command GUI\GO is typed. Four buttons are defined
by default in this window:

• the OK button,
which sets all variables defined in the main and sub-panel windows. This button also
executes the command passed as argument to the GUI\GO command (if specified).

• the UPDATE button,
which sets all variables defined in the main and sub-panel windows, without executing the
(optional) command passed as argument to the GUI\GO command.

• the ABORT button.
Variables are not modified, and an error is sent to the main program.

• the HELP button.
This button displays the help file specified in the GUI\PANEL command.

Additional buttons can also be added to the “main panel window” using the GUI\BUTTON com-
mand. Two types of buttons exist

• Buttons with no associated parameters. These buttons appear just after the 3 main buttons.

• Buttons with optional parameters. These buttons appear sequentially with the variables,
and have an associated parameter or “optional” window. When such a button is defined,
all subsequent LET commands create a widget in a “sub-panel” window. This window is
by default hidden, but can be unveiled by the user.

The “sub-panel” windows provide a way to hide some non-essential parameters, and/or to create
a “main window” with a control panel defining many actions, each action having its own input
window and separate help.

2.4.4 Help file structure

Command GUI\PANEL allows to associate an help file to the main window or detached menus,
and command GUI\BUTTON does the same for optional windows.

The HELP files format should be

1 Description
General help for the window or menu

2 NAME1
help for variable NAME1

2 NAME2
help for variable NAME2

1 ENDOFHELP

2 THE SIC MONITOR 29

where 1 and 2 are in the first column of the text file, and followed by a single space.
Clicking on the HELP button will display the complete help file in a scrolled window. Clicking

in the prompt area of an input variable will display the associated variable name and the help
for this variable (if it exists).

2.5 Interacting with the Operating System

Since sic was designed to be portable on various operating systems (Unix, Mac-OS, MS-Windows,
and in the past the defunct VMS), interaction with the operating system is normally kept to a
minimum.

However, many operations eventually deal with files handled by the operating system. To
avoid platform dependencies, SIC allows some basic file operations through the SIC command.

When control is desired at the operating system level, the command SYSTEM can be used to
access it without loosing the SIC context. For user convenience, SIC also accepts the short-cut

$ operating_system command

instead of the more conventional SIC-like syntax

SYSTEM "operating_system command"

2.5.1 File Operations

Operations on the file system can be done directly within sic, using the SIC command.

SIC> SIC DIRECTORY [NewDir]
to control the working directory.

SIC> SIC MKDIR NewDir
to create a new directory.

SIC> SIC\SIC APPEND FileIn FileOut
Appends file FileIn to FileOut.

SIC> SIC\SIC COPY FileIn FileOut
Copies file FileIn to FileOut.

SIC> SIC\SIC DELETE File
Deletes file named File. Caution: no confirmation is required.

SIC> SIC\SIC RENAME FileOld FileNew
Renames file FileOld to FileNew. Both files should reside on the same disk. To move files

across different disks, use SIC COPY and SIC DELETE.

SIC> SIC\SIC FIND FileFilter
search for files with names matching the specified filter, and return the result in a structure
named dir%. dir%nfiles is the number of files found, and dir%files[1:dir%nfiles]
their names. See the internal help for details.

The file operations through the SIC command should be used preferentially to operations
through the SYSTEM command for portability, specially in command procedures.

2 THE SIC MONITOR 30

2.5.2 SYSTEM Command: Unix-like operating system

SYSTEM ["Command"]
Without argument, the SYSTEM command will create a subshell, using the user’s default shell

(sh, csh, ksh, etc. . .). Control will return to the calling program once the subshell terminates
(i.e. using the ’exit’ or ’bye’ or ’logout’ command).

With an argument, the SYSTEM command will execute the corresponding Unix command in a
subshell.

Note that because subshells are used, you cannot change environment variables in this way.
In particular, to change your working directory use the SIC DIRECTORY command.

2.6 Customizing

2.6.1 Logical Names

All programs based on sic read in files specifying Logical names which are used when sicmust
refer to external files (such as procedure or images). Logical names are similar in syntax and
functions to VMS logical names. Two files define general logical names required for sic based
programs to work properly (where to find help files for example) and site-specific features (such
as printer name, scratch space, etc...).

On UNIX and Mac-OS systems, users can specify there own logical names in the file

$HOME/.gag.dico

On MS-Windows systems, “personal” logical names should be set in the file

$GILDAS\dico.lcl

where $GILDAS is the top directory of the Gildas software as defined at installation (normally
\Program file\Iram\Gildas see in the autoexec.bat file on Windows-95).

Logical names can also be added or modified at run time using the SIC LOGICAL command.

2.6.2 User Defined Commands

sic allows the user to define new command, by means of the DEFINE COMMAND command. The
syntax is the following:

DEFINE COMMAND Newcom "Old Command with arguments" [Help_File]

where NEWCOM is the name of the new command and HELP FILE is an optional text file used to
provide help about the command. Because DEFINE COMMAND does not provide any specific syntax
to specify the use of the new command arguments, it is in practice used essentially to allow
documented access to procedures, as for example in

DEFINE COMMAND INPUT "@ gag_pro:p_input.greg" gag_pro:input_greg.hlp

2.6.3 Initialization File

Although this is not a default feature of sic, many programs using sic call a initialization macro
at run time to define symbols, execute startup commands and so on. This file is typically named

GAG_INIT:INIT.DefExt

where DefExt is the default macro extension used by the program, and is usually the program
name. Consult the specific programs documentation. GAG INIT is a logical name that normally
points to your login directory, or (by default) on $HOME/.gag/init/ on Unix-like systems.

2 THE SIC MONITOR 31

2.6.4 The SIC Command

The SIC command controls several internal parameters of the sic monitor. It has several cate-
gories of actions

File system related operations, described in Sect.2.5.1 APPEND COPY DELETE DIRECTORY FIND
MKDIR MODIFIED PARSE RENAME

Procedure related operations: EXPAND EXTENSION MACRO OUTPUT SAVE VERIFY WHICH

Customization EDIT HELP INTEGER LOGICAL MESSAGE PRECISION SYSTEM TIMER WINDOW

Command interpretation Language\ PRIORITY SYNTAX

Miscellaneous actions BEEP CPU DATE DEBUG DELAY FLUSH LOCK RANDOM SEED USER WAIT

The SIC command without arguments produces a summary of the internal sic status, and
(when that makes sense) with a single argument it shows the status of that argument. Please
refer to the internal HELP for details.

3 RUNNING TASKS 32

3 Running Tasks

This section contains the minimum information required to use the gildas image processing
tasks.

To run tasks, use the commands RUN and SUBMIT from the VECTOR\ language. Both commands
are very similar. The RUN command will execute the task as a detached process, and the SUBMIT
command in a batch queue named GILDAS BATCH.

The VECTOR\ language contains the following commands :

FITS : A simple FITS -- Gildas conversion tool
RUN Program : Activates a GILDAS task in a detached process
SPY [Task] : Look at the status of one or all GILDAS tasks.
SUBMIT Program : Submit a GILDAS task to GILDAS_BATCH queue
TRANSPOSE : A command to transpose a Gildas data file.

3.1 Window Mode

The window mode is the default mode on X-Window systems with Motif interface. Let us assume
in the following example we want to execute a task named example. To activate example, the
user will type

VECTOR> RUN example
or

VECTOR> SUBMIT example

A separate input window is created: The user can then modify any of the parameters by clicking
in the dialog areas. Help can be obtained by clicking on the HELP button, or on any parameter
description.

Since sic is used, parameter values can be variables or arithmetic expressions (e.g.
2*PI+EXP(X[3]) is a perfectly valid value for a real, provided the array X[n] with n>3 has
been previously defined).

Once all parameters are defined, the task can be launched by clicking the OK button, or
aborted using the ABORT button. Parameter values are checked, and if all parameters are valid,
the task is executed (or submitted). If one parameter is invalid, the RUN or SUBMIT command
sends back a message :
E-RUN, Missing GO command
and returns an error.

3.2 Query Mode

When no window-mode is available, the user is prompted for the parameters. In this example,
the dialog will be

An integer value
INTEGER I$ 1 <CR>
A value between 0 and 1
REAL A$ 0.1 <CR>
Any character string
CHARACTER CHAIN$ ABCD <CR>
4 Real values

3 RUNNING TASKS 33

3 RUNNING TASKS 34

REAL ARRAY$[4] 1 2 3 4 <CR>
A valid name
FILE FILE$ TESTFILE.DAT <CR>
Any values
VALUES OLD$ acos(-1) 1.234 <CR>

The prompting method is always the same: an explanatory first line indicating the meaning of
the parameter, and a second line in the following format:

TYPE NAME[Dimensions]

where

• TYPE indicates the type of parameter (CHARACTER, FILE, INTEGER, LOGICAL, REAL). A
parameter of type FILE is a character string containing a valid file name. VALUES is intended
to hold multiple values (which can be mathematical expression), without any prior on the
number of values.

• NAME is the parameter name

• [Dimensions] are the parameter dimensions, in case it is an array. Only REAL and INTEGER
parameters may be arrays.

Query mode is also used for missing parameters in Window-mode.

3.3 EDIT Mode

Commands RUN and SUBMIT execute two sic command procedures, the Initialization File
Task.init, which defines all parameters needed for example, and the Checker File Task.check,
which verifies that all parameters are valid. In the example above, the example.init file is

TASK\INTEGER "An integer value" I$
TASK\REAL "A value between 0 and 1" A$
TASK\CHARACTER "Any character string" CHAIN$
TASK\REAL "4 Real values" ARRAY$[4]
TASK\FILE "A valid file name" FILE$
TASK\VALUES "Any values" OLD$
TASK\GO

This is a standard procedure containing commands of a sic language named TASK\. Com-
mands from this language are used to define the parameters required by the task, and cannot be
called interactively. The command syntax is always the same :

TASK\Command "Prompt String" Parameter$[Dimensions] [Value [...]]

where

• Command indicates the type of parameter (CHARACTER, FILE, INTEGER, LOGICAL, REAL).
A parameter of type FILE is a character string containing a valid file name. VALUES is
intended to hold multiple values (which can be mathematical expression), without any
prior on the number of values.

3 RUNNING TASKS 35

• "Prompt String" is a character string used as a prompt to ask for the parameter value(s)

• Parameter$ is the parameter name

• [Dimensions] are the parameter dimensions, in case it is an array. Only REAL and INTEGER
parameters may be arrays.

• Value(s) are the parameter values, an array requiring as many values as array elements.

Once all parameters have been assigned values, RUN and SUBMIT commands execute the
example.check file, writing the current parameter values in an auxiliary file which will be used
by the task example. If a parameter is incorrect, an error is returned, and the task example not
executed.

Instead of supplying the parameters in a query mode, the user can use a text editor to edit
the .init file using command

VECTOR> RUN example /EDIT
or

VECTOR> SUBMIT example /EDIT

The parameter values can then be typed after the parameter names in the example.init file,
using sic continuation marks (“-” as the last character of a line) if needed for long command
lines. example.init will be executed after exiting the editor. If a parameter value is missing,
the user will nevertheless be prompted for it after exiting the editor.

The text editor called is user defined by the command SIC\SIC EDITOR or the logical name
GAG EDIT.

3.4 Specifying the .init File

By default, in Query mode RUN and SUBMIT commands use the .init file located in TASK#DIR:
search path. In EDIT mode, the .init file located in the current default directory is used if it
exists. To override this default behaviour, you can specify any .init file as the second argument
to commands RUN and SUBMIT.

3.5 Errors and Aborting

If an error occurs in the .init or .check procedure, the erroneous command will be returned
to the user, and the procedure execution is interrupted by a pause. You can then correct the
error, execute the command, and type C or CONTINUE to resume the procedure execution. Or you
can type QUIT (as in any sic procedure indeed) to abort the execution, until the RUN or SUBMIT
command returns an error.

You may also want to abort a RUN or SUBMIT command while you are in the editor: typing
QUIT instead of EXIT to end the editing will do it.

3.6 Log Files

A log file is created by the RUN command in your GAG LOG: directory with the task name as file
name and the extension .gildas; this log is printed by the SUBMIT command. If the user is still
running the main program (GreG or Mapping, etc. . .) when a task completes, he (or she) is
warned of the completion with the return status. Log files are not purged automatically, so that

3 RUNNING TASKS 36

you should take care of that. They are intended essentially as a debugging aid if something goes
wrong, but you can print them as archive of your data processing.

A command file is created in your GAG LOG: directory to run or submit the programs. It is in
principle deleted at task completion.

3.7 Synchronizing Jobs

The batch queue GILDAS BATCH should have a job limit of 1, so that all tasks submitted by
command SUBMIT execute in sequence. There may even be intervening jobs from other users.

Tasks activate by command RUN must complete before control is returned to the user.
Command SPY can be used to monitor the execution of tasks activated by command RUN.

3.8 Obtaining Explanations: HELP RUN TaskName Command

Help on each individual task can be obtained with the HELP RUN followed by the task name. Help
on their parameters can be obtained by adding the parameter name, or * for all parameters.

4 SIC PROGRAMMING MANUAL 37

4 SIC Programming Manual

The sic programming manual has been moved to the gildas programming guide.

5 SIC Language Internal Help

5.1 Language

SIC\ Command Language Summary

ACCEPT : Read variable in various format.
BEGIN : Begin a sub-procedure, help file or data file.
BREAK : Exit without error from a FOR-NEXT loop.
COMPUTE : Execute non-arithmetic operations on variables.
CONTINUE : Resume macro or loop execution after PAUSE.
DATETIME : Convert date and/or time to/from various formats
DEFINE Type V : Define new variables.
DELETE : Delete variables or symbols.
DIFF Var1 Var2: List the differences between two variables or files.
EDIT [File] : Edit a file or a dump of the Stack.
ELSE [IF Log] : Alternate IF block directive.
END : End IF block structure or a sub-procedure.
EXECUTE : Execute a command line
EXAMINE Var : Type the current value of the specified variable.
EXIT [Code] : Exit from the program.
FOR : Open a FOR-NEXT loop. Also FOR /WHILE or FOR /IN.
HELP XX[\] : Give an explanation of command XX or language XX\.
IF Logical : Start a conditional IF block.
IMPORT Package: Dynamically import another package in current one.
LET : Assign value to variable.
MESSAGE : Send a message to screen and/or message file.
MFIT A=F(B,p) : Fit a formula into SIC variables.
MODIFY : Modify the spectroscopic axis of a cube.
NEXT : End FOR loop definition and activates the execution.
ON ERROR COMM : Change the current error recovery action.
PAUSE : Set a break point in a Loop or a Macro.
PYTHON : Start/End intercommunication between SIC and PYTHON.
QUIT : Abort an execution interrupted by PAUSE.
RECALL [Text] : Recall line from stack, and edit it if possible.
RETURN : Terminate procedure execution.
SAY "text" : Type a text or variable or expression value.
SIC Arg : List or Change some SIC internal status.
SORT Key Vars : Sort variables according to another one.
SYMBOL : Define, list and delete symbols.
SYSTEM : Create or attach sub-processes, run system commands.
TIMER : Check or customize the SIC timer.
TYPE [XX] : List file XX or the stack.
@ XX [P1 ...] : Read commands from macro XX and executes them.

5 SIC LANGUAGE INTERNAL HELP 38

5.2 ACCEPT

[SIC\]ACCEPT Var_Name /ARRAY File_Name [/options]
[SIC\]ACCEPT Var_Name /BINARY File_Name Offset
[SIC\]ACCEPT Var_1 [Var_2 [...]] /COLUMN File_Name [Separator] [/op-

tions]

Read SIC variables from formatted or binary files. This command has 3
major modes: /ARRAY to read in a FORMATTED way a SINGLE n-dimensional
variable, /BINARY to read in BINARY form a SINGLE n-dimensional vari-
able, and /COLUMN to read in a FORMATTED way SEVERAL 1-dimensional vari-
ables.

5.2.1 ACCEPT /ARRAY

[SIC\]ACCEPT Var_Name /ARRAY File_Name [/FORMAT String] [/LINE Begin
End]

Read a N-Dimensional variable of name Var_Name from a formatted file
File_Name, using list-directed (free) format, or a user specified format
if /FORMAT option is present. The /LINE option can be used to skip some
lines before starting reading. Not recommended for character arrays.

5.2.2 ACCEPT /BINARY

[SIC\]ACCEPT Var_Name /BINARY File_Name [Skip]

Read a N-Dimensional variable of name Var_Name from a binary file
File_Name. The optional Skip argument indicates how many BYTEs to skip
before starting reading.

The command COMPUTE LINES /BLANK can be used to count the number of
(useful) lines in a file and to define the output arrays with the appro-
priate size.

5.2.3 ACCEPT /COLUMN

[SIC\]ACCEPT Var_1 [Var_2 [...] /COLUMN File_Name [Separator] [/FOR-
MAT String] [/LINE L1 [L2]]

Read ONE or SEVERAL 1-Dimensional variables in a flexible format from a
formatted file File_Name. Each variables can be of any length, from 0
(scalar) to N. They are filled by reading each associated column, start-
ing from first line. Data is read in as many lines as required. If end
of file is reached in the meantime, an error is raised.

Characters after a "!" are considered as comments and are ignored. Blank
or full comment lines (starting with a "!") are skipped. The starting
line number can be selected with /LINE option.

5 SIC LANGUAGE INTERNAL HELP 39

A * as an argument of the ACCEPT command indicates a dummy variable used
to skip a column in the input file. For example, the command

ACCEPT A * B C /COLUMN TEST.DAT
reads A,B and C from columns 1,3 and 4 of file TEST.DAT, since the * in-
dicates to skip the second column.

Option /FORMAT can also be used to specify a fixed Fortran-like format.

By default, the format is the equivalent of the Fortran list-directed
(*) format. In this format, character strings must be included between
quotes. The default can be changed by specifying a separator as a second
argument of option /COLUMN. The separator can be " " (which gives a be-
haviour like the COLUMN command of GreG), or any other character. For
example, specifying "\;" as a separator can allow to read CSV files
(e.g. Excel data files).

Example of list-directed read (note the quotes are taken into account):
SIC> type test.dat
123 "Hello, world!" 3.14
SIC> define integer i
SIC> define character c*16
SIC> define real r
SIC> accept i c r /column test.dat
SIC> exa i c r
I = 123 ! Integer GLOBAL
C = Hello, world! ! Character*16 GLOBAL
R = 3.140000 ! Real GLOBAL

In most cases, a list-directed is equivalent to use space as
separator. Only when quotes or blanks in strings are involved makes a
difference.

Example of blank-separated read (in this case, providing the blank
separator or not makes no difference):

SIC> type test.dat
123 Hello 3.14
SIC> accept i c r /column test.dat " "
SIC> exa i c r
I = 123 ! Integer GLOBAL
C = Hello ! Character*16 GLOBAL
R = 3.140000 ! Real GLOBAL

Example of blank-separated read (in this case, the blank separator MUST
be given):

SIC> type test.dat
123 1.23" 4.56"
SIC> define character l*12 m*12

5 SIC LANGUAGE INTERNAL HELP 40

SIC> accept i l m /column test.dat " "
SIC> exa i l m
I = 123 ! Integer GLOBAL
L = 1.23" ! Character*12 GLOBAL
M = 4.56" ! Character*12 GLOBAL

5.2.4 ACCEPT /FORMAT

Specify a fortran format to read the input file for command ACCEPT
/ARRAY or ACCEPT /COLUMN. Mixing CHARACTER and NUMERIC (REAL,...) ar-
rays is not available yet, and only one character array can be read at a
time. Blank or commented lines are not skipped.

Example:
SIC> TYPE cities.dat
Toulouse 1.111 11.11111
Bordeaux 2.222 22.22222
Grenoble 3.333 33.33333
Marseille 4.444 44.44444

(truncated)
SIC> DEFINE CHARACTER CITY*16[44]
SIC> DEFINE REAL X[44] Y[44]
SIC> ACCEPT X Y /COLUMN "cities.dat" /LINE 4 /FORMAT "20x,F8.3,1x,F8.3"
SIC> ACCEPT CITY /COLUMN "cities.dat" /LINE 4 /FORMAT "2x,A16"

This option is invalid with /BINARY.

5.2.5 ACCEPT /LINE

[SIC\]ACCEPT Var_Name /LINE L1

Indicate the first line to be read in the input file for command ACCEPT
/ARRAY or ACCEPT /COLUMN. Blank and commented lines have to be taken in-
to account in L1.

This option is invalid with /BINARY.

5.2.6 ACCEPT Excel

Excel (TM) datafile may be readable by command ACCEPT. They must be con-
verted to CSV format (Comma Separated Values). A suitable use of the
dummy variables in ACCEPT command allows to skip the non-numeric fields.
The proper separator must then be specified using the second argument of
option /COLUMN: e.g.
ACCEPT * Var1 Var2 /File Excel.csv ";" /LINES 2 20
will read Var1 and Var2 from lines 2 to 20 of the corresponding Excel
file, from Excel columns "B" and "C" (second and third).

5 SIC LANGUAGE INTERNAL HELP 41

To be documented: Can character variables also be read with numeric ones
provided some adequate /FORMAT option ?

5.3 BEGIN

[SIC\]BEGIN Procedure|Help|Data FileName

Begin a new Procedure, Help file, or ASCII Data file. All lines until
the corresponding END Procedure|Help|Data FileName command is found are
considered to be the body of the new file. Such files are located in the
directory designated by the logical name GAG_PROC:.

5.4 BREAK

[SIC\]BREAK

Terminate a loop execution. The two uses of command BREAK are usually
ON ERROR BREAK
FOR I 1 TO 3 BY 0.5
...

NEXT
or

LET A = C ! A is a known variable
FOR I 1 TO 100 BY 1
...
IF I+A.EQ.0 BREAK

NEXT
BREAK differs from QUIT because it does not transmit any error.

5.5 COMPUTE

[SIC\]COMPUTE OutVar OPERATION InVar [Parameters] [/BLANKING Bval
[Eval]]

Perform operations or transformations on variables that are not directly
supported by the array capabilities of the SIC command interpretor. Out-
Var is the output variable, InVar the input variable. Outvar must be de-
fined beforehand.

The following operations are available on INTEGER, REAL and DOUBLE PRE-
CISION arrays, regardless of their nature:
- MAX

MIN
MEAN
RMS (standard deviation)
SUM
PRODUCT

5 SIC LANGUAGE INTERNAL HELP 42

MEDIAN
for which InVar is an array of rank 1 to 7 (a 1-D to 7-D array), and
OutVar must be an array of lesser rank (i.e., one or more dimension
less than InVar, down to a number), AND of identical shape as InVar
for the dimensions in common.
Example (if A[4,12,2,8] and B[4,12]):

COMPUTE B MAX A
Sections, implicit transpositions, etc... permitted by SIC are sup-
ported.

- HISTOGRAM: see subtopic HISTOGRAM for details.
Blanking values Bval and Eval allow to ignore values of the Invar array
if at Eval from Bval, for these operations only. At least Bval must be
passed to option /BLANKING, and default is 0.0 for Eval. SET BLANKING
has no effect here since it is a command of the GREG1\ language.
In case of no valid result, NaN is returned, or Bval if blanking is en-
abled. This may occur in particular when all InVar values are blanked.

The following transformations are available:
- GATHER

Return the list of different input values (see subtopic for details)
- RANKORDER

Return the ordering of the input values.
- INTEGRAL or DERIVATIVE

Integral or derivative of the input variable
- FFT+ or FFT-

Direct or Inverse Fast Fourier Transform: see subtopic FFT for de-
tails.

- FOURT+ or FOURT-
Direct or Inverse Fast Fourier Transform: see subtopic FOURT for de-
tails.

- COMPLEX
Populates the Real and (optionally) Imaginary part of OutVar (com-
plex variable) with InVar (real) and (optionally) the Imaginary part
by the following (real) variable name.

- REAL
OutVar = REAL part of InVar. OutVar is Real, InVar is Complex .

- IMAG
OutVar = IMAGE part of InVar. OutVar is Real, InVar is Complex.

- ABS
OutVar = AMPLITUDE (InVar). OutVar is Real, InVar is Complex.

- PHASE
OutVar = PHASE (InVar). OutVar is Real, InVar is Complex.

- CMP* operations as in "COMPUTE OutVar CMPMUL InVar1 InVar2". All
variables must be complex arrays of identical size.
CMPADD: OutVar = InVar1 + InVar2.
CMPSUB: OutVar = InVar1 - InVar2.
CMPMUL: OutVar = InVar1 * InVar2.

5 SIC LANGUAGE INTERNAL HELP 43

CMPDIV: OutVar = InVar1 / InVar2.

Operations on files:
- DATE: File last modification time
- LINES: Number of lines in a formatted file

Miscellaneous operations (see subtopics for details):
- DIMOF
- GAG_DATE
- LOCATION
- BTEST Test bit values
- IS_A_SIC_VAR

5.5.1 COMPUTE DATE

[SIC\]COMPUTE Modification_Date DATE Filename

Return the last modification date of the file Filename into the integer
variable Modification_Date. Used in procedures to check when file has
last been changed.

If the output variable is a 4-bytes integer (Fortran I*4), returned val-
ue is in seconds since 01-jan-1970. If the variable is a 8-bytes integer
(Fortran I*8), returned value is in nanoseconds since 01-jan-1970. In
the latter case, your system (e.g. Linux >= 2.5.48) AND filesystem (e.g.
ext4) must support timestamp granularity below the second. If not, value
precision is limited to 1 second.

5.5.2 COMPUTE DIMOF

[SIC\]COMPUTE OutVar DIMOF InVar

Return the shape of array InVar in OutVar[1:7], and its rank in Out-
Var[8]. For this purpose, OutVar must be an INTEGER array of dimension
[8]. Undefined dimensions are set to 0.

See also HELP FUNCTION RANK and HELP FUNCTION SIZE.

5.5.3 COMPUTE FFT

[SIC\]COMPUTE OutVar FFT+|FFT- InVar [REAL]

FFT+ performs Direct Fast Fourier Transform, while FFT- performs Inverse
Fast Fourier Transform.

Command accepts REAL or COMPLEX variables. OutVar is a 2-D array with
second dimension equals 2, storing respectively the Real and Imaginary
part of the (complex) output Fourier transform. By default, InVar is
like OutVar, but if parameter REAL is specified InVar is a 1-D array.

5 SIC LANGUAGE INTERNAL HELP 44

5.5.4 COMPUTE FOURT

[SIC\]COMPUTE OutVar FOURT+|FOURT- InVar

FOURT+ performs Direct Fast Fourier Transform, while FOURT- performs In-
verse Fast Fourier Transform.

Operates on input and output on COMPLEX arrays of dimension [2,NX,NY].

5.5.5 COMPUTE GATHER

[SIC\]COMPUTE OutArray GATHER InArray

Returns in a NEW 1-D variable named OutArray the list of values found in
the (existing) n-D variable InArray. The output array must not exists
and is created by the program itself. It is of the same type as the in-
put array.

NaN and Blanked values are ignored.

5.5.6 COMPUTE GAG DATE

[SIC\]COMPUTE IntDate GAG_DATE "15-DEC-2035"
[SIC\]COMPUTE StrDate GAG_DATE 4127

GAG_DATE keyword converts a string date into a "radio Julian date" (in-
teger value), or vice-versa. The kind of the output variable (resp. in-
teger or character) rules the expected kind for input variable (resp.
character or integer). The output variable must be scalar and writeable,
and the date string should be 11 characters at least.

A "radio Julian date" (or "Jansky Julian date") starts as -2^15 on the
date of the first radio observation by Karl Jansky. It is thus the Modi-
fied Julian date minus 60549. That choice was made to maximize the time
interval over which radio astronomical data could be usefully stored in
an integer*2, back when 2 bytes of header space per spectrum were a sig-
nificant consideration. This date has little meaning outside the rather
sparse community of souls gathered around the CLASS program, however.

5.5.7 COMPUTE HISTOGRAM

[SIC\]COMPUTE OutVar HISTOGRAM InVar [Hmin] [Hmax] [/BLANKING Bval
[Eval]]

Put in variable OutVar (dimension [n,2]) the histogram of values of n-D
variable InVar, eventually between the cuts Hmin and Hmax, and with
blanking values Bval and Eval (that is, values of the Invar array are
not taken in account for the histogram if at Eval from Bval). These pa-

5 SIC LANGUAGE INTERNAL HELP 45

rameters can be absent. One can use ’*’ to omit any of them.

The number of bins is dictated by the first dimension of the array Out-
Var. In the absence of said cuts, the cuts used are the maximum and min-
imum values of the InVar array. The OutVar variable contains the his-
togram in its first column (OutVar[1]) and the corresponding bin value
in the second column (OutVar[2]).

5.5.8 COMPUTE IS A SIC VAR

[SIC\]COMPUTE OutVar IS_A_SIC_VAR InVar

Determines whether InVar (Character string) is the name of an existing
SIC Variable or not. OutVar must be a scalar Logical variable.

The functionality is similar to the build-in SIC function EXIST, but EX-
IST would complain about invalid filenames as arguments. Here, InVar
can be any arbitraray string.

This command is used in some scripts to determine silently whether its
arguments are File names, variable names or other expressions (see e.g.
p_load.greg for an application.)

5.5.9 COMPUTE LINES

[SIC\]COMPUTE OutVar LINES FileName [/BLANK]

Count the number of lines in a formatted file. More precisely, it counts
the number of carriage returns (same as Linux shell "wc -l"). Be careful
of missing carriage return at the end of your files.

The option /BLANK can be used to ignore blank and comment (starting with
"!") lines, in the same way the command ACCEPT does.

5.5.10 COMPUTE LOCATION

[SIC\]COMPUTE OutVar LOCATION InVar Value

Search for Value in the array InVar, and puts in OutVar the 2 nearest
indices of InVar for which its values surrounds Value. These variables
have some requirements:
- InVar must be a 1D-array of REAL or DOUBLE values,
- Value must be scalar numeric,
- OutVar must be a 1D-array of 2 INTEGER values.

InVar is also intended to be ordered (ascending or descending), or else
the result is unpredictable. Use SIC\SORT to sort arrays.

5 SIC LANGUAGE INTERNAL HELP 46

5.5.11 COMPUTE RANKORDER

[SIC\]COMPUTE OutVar RANKORDER InVar

Compute the order (sorting array) corresponding to the values in InVar,
e.g.
SIC> define real a[4] b[4]
SIC> let a 10 15 12 9
SIC> compute b rankorder a
SIC> exa b
B is a real Array of dimensions 4

4.000000 1.000000 3.000000 2.000000

InVar and OutVar are R*4 or R*8 variables, assumed to be 1-D variables.
This can be used e.g. for statistical non-parametric tests like the
Spearman test.

5.5.12 COMPUTE INTEGRAL

[SIC\]COMPUTE OutVar INTEGRAL InVar

Compute the integral of the InVar variable, in the classical sense, i.e.
OutVar[i] = InVar[1]+Invar[2]+...+Invar[i]

InVar and OutVar are assumed to be 1-D variables

5.5.13 COMPUTE DERIVATIVE

[SIC\]COMPUTE OutVar DERIVATIVE InVar

Compute the derivative of the InVar variable, in the classical sense,
i.e.
OutVar[i] = InVar[i+1]-Invar[i]

InVar and OutVar are assumed to be 1-D variables, of size N. OutVar[N]
is linearly extrapolated from the N-1 and N-2 values.

5.5.14 COMPUTE BTEST

[SIC\]COMPUTE OutVar BTEST InVar [Ibit]

Bit-test one or several bit values of the input variable, and return
true for each bit equal to 1.

The optional integer argument Ibit indicate which bit should be tested.
The default is to check all the bits.

If all the bits of (a single element of) InVar are tested, OutVar must
be an array with its first dimension equal to this number of bits, e.g.
32 for INTEGERs, 64 for DOUBLEs, etc. InVar may be a multi-dimensional

5 SIC LANGUAGE INTERNAL HELP 47

array, in which case OutVar must have the same extra-dimensions.

In details, this tool is an overlay to the BTEST Fortran function (ex-
cept that bit numbering starts at 1 here). Note that this hides the ma-
chine dependencies (IEEE, EEEI, etc) by using a unique integer model re-
gardless of its physical layout. For more information, please refer to
the Fortran documentation.

Examples:

SIC> define integer i
SIC> let i 2
SIC> define logical one
SIC> compute one btest i 1 ! First bit value
SIC> exa one
ONE = F ! Logical GLOBAL

SIC> define logical all[32]
SIC> compute all btest i ! All bit values
SIC> exa all
ALL is a logical Array of dimensions 32
F T F
F F F F F F F F

SIC> define integer i2[3]
SIC> let i2 1 2 3
SIC> define logical one2[3]
SIC> compute one2 btest i2 2 ! Second bit values of the 3 elements
SIC> exa one2
ONE2 is a logical Array of dimensions 3
F T T

SIC> define logical all2[32,3]
SIC> compute all2 btest i2 ! All bit values of all elements
SIC> exa all2[1] all2[2] all2[3]
ALL2[1] is a logical Sub-Array of dimensions 32
T F
F F F F F F F F
ALL2[2] is a logical Sub-Array of dimensions 32
F T F
F F F F F F F F
ALL2[3] is a logical Sub-Array of dimensions 32
T T F
F F F F F F F F

5.6 CONTINUE

[SIC\]CONTINUE or C

5 SIC LANGUAGE INTERNAL HELP 48

Resume loop or macro execution after a PAUSE (explicit or caused by an
error or a <^C>). Typing C instead of CONTINUE will always do exactly
the same thing. This is the only superior abbreviation installed in SIC.

5.7 DATETIME

[SIC\]DATETIME /FROM Date-Time-Spec /TO Outvar1 Outformat1 [... Out-
varN OutformatN]

Convert a date and/or time between various formats, storing result in
one or more output variables. The options /FROM and /TO must be present.

5.7.1 DATETIME /FROM

[SIC\]DATETIME /FROM NOW
[SIC\]DATETIME /FROM Val1 Form1 ... ValN FormN

The option /FROM is used to define a single and non-ambiguous date-time.
The date-time is fully specified as the combination of a year, month,
day, hour, minute, and seconds. They can be described with the following
pairs:
Iye YEAR (integer, default 1970)
Imo MONTH (integer, default 1)
Ida DAY (integer, default 1)
Iho HOUR (integer, default 0)
Imi MINUTE (integer, default 0)
Nse SECONDS (real, default 0.0)

The pairs can be combined in any order, but each field must be defined
once at most. If a field is not specified, its default value is used.
The day, hour, minute, and seconds fields can go beyond their usual
ranges: the resulting date-time is shifted accordingly. For example:
DATETIME /FROM 2015 YEAR ! 2015-01-01 00:00:00.000
DATETIME /FROM 2015 YEAR 11 MONTH 16 DAY ! 2015-11-16 00:00:00.000
DATETIME /FROM 2015 YEAR 100 DAY ! 100-th day of year 2015

The keyword NOW can be used alone to specify the current UTC date-time.
The values PREVIOUS or NEXT can also be used for each field: they re-
solve as the previous or next quantity with respect to the current UTC
date-time. These syntaxes define all the fields at once, i.e. they can
not be combined with other pairs of values. For example:
DATETIME /FROM NOW ! Now (UTC)
DATETIME /FROM PREVIOUS DAY ! Yesterday, same time
DATETIME /FROM NEXT HOUR ! Today or tomorrow, in 1 hour from now

5 SIC LANGUAGE INTERNAL HELP 49

The option /FROM also recognizes specific date and/or time formats:
JULIAN Julian date with fractional day (e.g. 2457343.227256944)
MJD Modified Julian Date (e.g. 57342.72725694445)
ISO ISO date (e.g. 2015-11-16T17:27:15.000)
GAG_DATE GAG date integer format (e.g. -3207)
YYYYMMDD date with all numbers (e.g. 20151116)
DD-MMM-YYYY date where MMM is the month in letters (e.g. 16-NOV-2015)
RADIAN time of day in radians, usually betwen 0 and 2*pi
SEXAGESIMAL time of day using sexagesimal notation (e.g. 17:27:15.000)

JULIAN, MJD and ISO define the 6 date and time fields: they can not be
combined with anything else. GAG_DATE, YYYYMMDD, and DD-MMM-YYYY define
the date: they can be combined with a time specifier. RADIAN and SEXA-
GESIMAL define the time: they can be combined with a date specifier. For
example:
DATETIME /FROM 2015-11-16T17:27:15.000 ISO
DATETIME /FROM 57342.72725694445 MJD
DATETIME /FROM -3207 GAG_DATE 4.569490147 RADIAN

The inputs can be either explicit scalar values, scalar variables, or
array variables. They can be mixed as long as arrays have equal size.
For example
DATETIME /FROM "16-NOV-2015" DD-MMM-YYYY ArrayVar RADIAN

results in an array specification, where all the specified values share
the same date but each time is taken in ArrayVar.

5.7.2 DATETIME /TO

[SIC\]DATETIME /TO Outvar1|* Outformat1 [... OutvarN|* OutformatN]

The date-time(s) defined by the /FROM option is converted and transfered
to the output targets. A target can be a variable (given its name) or
the terminal (if * is given). There is no restriction on their kinds and
numbers, i.e. you can convert the date-time to all the possible formats,
or repeat the same conversion for several targets. Supported formats
are:

YEAR year value as integer
MONTH month value as integer
DAY day value as integer
HOUR hour value as integer
MINUTE minute value as integer
SECONDS seconds value as real value
JULIAN Julian date with fractional day (e.g. 2457343.227256944)
MJD Modified Julian Date (e.g. 57342.72725694445)
ISO ISO date (e.g. 2015-11-16T17:27:15.000)
GAG_DATE GAG date integer format (e.g. -3207)
YYYYMMDD date with all numbers (e.g. 20151116)

5 SIC LANGUAGE INTERNAL HELP 50

DD-MMM-YYYY date where MMM is the month in letters (e.g. 16-NOV-2015)
RADIAN time of day in radians (betwen 0 and 2*pi)
SEXAGESIMAL time of day using sexagesimal notation (e.g. 17:27:15.000)

If input the date-time specification is an array, the output variable(s)
must be arrays of the same size.

5.8 DEFINE

[SIC\]DEFINE Type Var1 [Keys...] [Var2 [Keys...] [...]] [/GLOBAL]
[/LIKE VarLike] [/TRIM [Rank]]

If Type is FUNCTION, define a user-function. If Type is COMMAND or LAN-
GUAGE, define a new user command or language respectively. Otherwise,
define new variables of the specified type. Type can then be REAL, INTE-
GER, DOUBLE (for double precision real values), LOGICAL, CHARACTER, or
TABLE, HEADER, IMAGE, UVTABLE, STRUCTURE, FITS or ALIAS. By default, new
variables are LOCAL, i.e. valid only within the current macro and all
loops or interactive levels called by this macro. When the /GLOBAL
switch is specified, the variables are valid at all levels. Local vari-
ables are examined before global variables.

5.8.1 DEFINE ALIAS

[SIC\]DEFINE ALIAS AliasName TargetVar [/GLOBAL]

Define a new variable AliasName pointing towards (a subset of) an exist-
ing variable. The new alias shares all the properties of its target:
type, Local or Global status, Readonly attribute. The TargetVar can be a
sub-array, but implicit transposition is not allowed.

If the /GLOBAL option is present, the TargetVar must be a Global vari-
able.

Aliases can be deleted using the standard DELETE /VAR command: this does
not delete the TargetVar variable. On the contrary, when a standard
variable is deleted, all aliases attached to it are also deleted, since
the variable content disappears.

Structures cannot have aliases, but structure members can.

5.8.2 DEFINE CHARACTER

[SIC\]DEFINE CHARACTER Var1*Lvar1[DIM1] [...]
[SIC\]DEFINE CHARACTER*Length Var1[DIM1] [...]

CHARACTER variables can be scalar or multi-dimensional. The length of
CHARACTER variable is specified after an * either after CHARACTER key-
word or after the name of the variable. When both are present, the per-

5 SIC LANGUAGE INTERNAL HELP 51

variable length has precedence. The dimension field (same syntax as for
other arrays) should follow the length declaration. The CHARACTER key-
word can be abbreviated, i.e. this is a valid statement

DEFIN CHAR*12 Var1 Var2*36 Var3[16]

Character substrings can be accessed for reading and writing with the
[charmin:charmax] specification, e.g.

DEFINE CHARACTER C*128
LET C[3:4] "AB"
EXAMINE C[3:4]
IF C[3:4].EQ."AB" SAY "Yes"

The substring specification MUST be provided with the column ":", even
for a single character, e.g. C[1:1]. If the character variable has one
or more dimensions, the substring specification can be applied to a
scalar subarray, e.g.

DEFINE CHARACTER*128 D[3,4]
EXAMINE D[1,2][3:4]

It is an error to apply a substring specification to an array, e.g.
EXAMINE D[1,][3:4] ! Invalid

5.8.3 DEFINE COMMAND

[SIC\]DEFINE COMMAND NAME "Equivalent command" [Help_File]

Define a new user-defined SIC command.

By default, the new command will be part of the USER\ language. USER\
language is implicitely created if required without invoking DEFINE LAN-
GUAGE. If the command is prefixed by another user language, it will be
part of it. Attempting to add a command of a program language is an er-
ror.

Help_File is an optional argument indicating the name of the associated
help text to be used by the command HELP. The standard rules for help
syntax applies (see SIC documentation for details). If no help file is
provided, the one of the parent language will be used.

User defined commands are translated into their equivalent command at
execution time. They appear in the list of command displayed by HELP,
and can be abbreviated as normal "program-defined" commands. For example

DEFINE COMMAND INPUT "@ input.greg" pr:input_greg.hlp
define a new command USER\INPUT, which will execute procedure in-
put.greg.

5.8.4 DEFINE DOUBLE

[SIC\]DEFINE DOUBLE Var1[DIM1] [Var2[DIM2] [...]] [/GLOBAL]

5 SIC LANGUAGE INTERNAL HELP 52

DOUBLE variables can be multi-dimensional. Up to 7 dimensions can be
specified in the optional DIM field, with the following syntax:

Var[n1] or Var[n1,n2] etc... up to Var[n1,n2,n3,n4,n5,n6,n7]
where Var is the variable name and n1 to n7 are integer constants or
variables.

5.8.5 DEFINE FITS

[SIC\]DEFINE FITS Var File [HEADER] [[index] [T] [B]] [/GLOBAL]

Define variables associated to the keywords and data of a FITS file.
The defined variables depend on the FITS file content. Both "basic" FITS
files and FITS extension (XTENSION) are handled.

The HEADER keyword indicates to read only the FITS Headers (which in-
cludes any Extension), not the main data array.

An ’index’ value may be added to read only the ’index’-th extension.

With ’B’ code (stands for Basic): define only the basic keywords, not
proprietary keywords. In particular suppress HIERARCH keyword structure
present in ESO FITS headers.

The ’T’ code may be added to get all multidimensional arrays transposed
(depending on how the FITS file was written, sometimes the dimensionali-
ty of the SIC variables created from the FITS structure is not handy.
Using the transposition code can be a solution then).

The ’index’, ’T’ and ’B’ codes can appear in any order.

For basic FITS data, the following variables are defined
VAR%NDIM Integer Number of dimensions
VAR%DIM Integer[4] Dimensions
VAR%CONVERT Double[3,4] Conversion formulae for the 4 axes:

Reference pixel, Value at reference
pixel, Increment

VAR%DATA Real FITS data array
The variables are defined as part of a structure. GreG command LIMITS
/RGDATA A recognizes such a basic FITS structure in much the same way as
GILDAS images.

The DEFINE FITS command tries to define a SIC structure which contains
all FITS keywords, as well as all binary and ASCII tables located in
FITS extensions.

Support for Random groups (although this is an obsolescent FITS struc-
ture, it is still widely used) is also available.

5 SIC LANGUAGE INTERNAL HELP 53

DEFINE FITS only works to read FITS files, but not to create them. See
VECTOR\FITS to write FITS files (and also read them, but only the main
array so far).

5.8.6 DEFINE FUNCTION

[SIC\]DEFINE FUNCTION NAME(X,Y,Z) Expression(X,Y,Z)

Define an arithmetic user function of several variables. The maximum
number of variables is 8. The function definition can reference any of
the known mathematic operators and intrinsic or program defined func-
tions, but not previously defined user functions (i.e. user function
definition is not recursive).

5.8.7 DEFINE HEADER

[SIC\]DEFINE HEADER Var1 File1 Key1 [Var2 File2 Key2 [...]]
[/GLOBAL] [/TRIM [Rank]] [/LIKE OtherVar]

Define variables associated to the HEADER of the GILDAS images located
in the files specified by File1, File2, etc... The keywords Key1, Key2,
etc... must be either READ or WRITE.

FileJ can be * to define a virtual header. In this case, KeyJ must be
IMAGE or UVDATA. VarJ must include the dimensions, or the /LIKE option
should be present to derive them from an existing image.

The following variables are defined:

VAR%GENE Integer Length of general section
VAR%NDIM Integer Number of dimensions (ReadOnly)
VAR%DIM Integer[4] Dimensions (ReadOnly)
VAR%CONVERT Double[3,4] Conversion formulae for the 4 axes:

Reference pixel,
Value at reference pixel,
Increment

VAR%BLAN Integer Length of blanking section
VAR%BLANK Real[2] Blanking and tolerance
VAR%EXTREMA Integer Length of extrema section
VAR%MAX Real Maximum
VAR%MIN Real Minimum
VAR%WHERE Integer[4,2] Position of max and min
VAR%DESC Integer Length of units and coordinate system secti
VAR%UNIT Char*12 Image unit
VAR%UNIT1 Char*12 First axis type
VAR%UNIT2 Char*12 Second axis type
VAR%UNIT3 Char*12 Third axis type
VAR%UNIT4 Char*12 Fourth axis type

5 SIC LANGUAGE INTERNAL HELP 54

VAR%SYSTEM Char*12 Coordinate system
VAR%POSI Integer Length of position section
VAR%SOURCE Char*12 Source name
VAR%RA Double Right Ascension
VAR%DEC Double Declination
VAR%LII Double Galactic longitude
VAR%BII Double Galactic latitude
VAR%EQUINOX Real Equinox of coordinates
VAR%PROJ Integer Length of projection section
VAR%PTYPE Integer Projection type (code)
VAR%A0 Double First coordinate of projection center
VAR%D0 Double Second coordinate of projection center
VAR%ANGLE Double Position angle of projection
VAR%X_AXIS Integer First projected axis
VAR%Y_AXIS Integer Second projected axis
VAR%SPEC Integer Length of spectroscopy section
VAR%LINE Char*12 Line name
VAR%FREQRES Double Frequency resolution
VAR%IMAGFRE Double Image Frequency
VAR%RESTFRE Double Rest Frequency
VAR%VELRES Real Velocity resolution
VAR%VELOFF Real Velocity offset
VAR%F_AXIS Integer Frequency/Velocity axis
VAR%BEAM Integer Length of beam section
VAR%MAJOR Real Major axis of beam
VAR%MINOR Real Minor axis of beam
VAR%PA Real Position angle of beam

where VAR is the specified variable name for the header. VAR becomes a
dummy variable of type header, which can only be referenced in a further
DELETE /VARIABLE command, in structure assignments through command LET,
or in the HEADER command. The VAR%item variables are ReadOnly if the
keyword Key is READ, ReadWrite otherwise (including of course virtual
headers), except for the dimension variables which cannot be modified.

5.8.8 DEFINE IMAGE

[SIC\]DEFINE IMAGE Var1 File1 Key1 [Var2 File2 Key2 [...]]
[/GLOBAL] [/TRIM [Rank]]

Define variables associated to both the content and the header of the
GILDAS images located in the files, if specified. This command acts as a
combination of DEFINE HEADER and DEFINE TABLE. It accepts the same key-
words (KeyN) as DEFINE TABLE. If the keyword is READ, the header vari-
ables are mapped ReadOnly, otherwise they are mapped ReadWrite.

See HELP DEFINE HEADER for a description of the individual header vari-
ables.

5 SIC LANGUAGE INTERNAL HELP 55

FITS cubes can also be loaded as a Gildas image variable, using the FITS
file name in place of the file name. There will be no disk-to-disk
translation: at load time, the FITS header will be translated on-the-fly
to the GDF header elements, and the data will also be converted on-the-
fly if needed.
This feature is only available for cube-like data in Primary HDU. To
load other HDUs, use disk-to-disk conversion with the command V\FITS
/HDU.

5.8.9 DEFINE INTEGER

[SIC\]DEFINE INTEGER Var1[DIM1] [Var2[DIM2] [...]] [/GLOBAL]

INTEGER stands for SHORT (I*4) or LONG (I*8) integers depending on the
current SIC INTEGER rule.

INTEGER variables can be multi-dimensional. Up to 7 dimensions can be
specified in the optional DIM field, with the following syntax:

Var[n1] or Var[n1,n2] etc... up to Var[n1,n2,n3,n4,n5,n6,n7]
where Var is the variable name and n1 to n7 are integer constants or
variables.

5.8.10 DEFINE LANGUAGE

[SIC\]DEFINE LANGUAGE Name [Help_File]

Define a new user language. User languages can be filled with user com-
mands with DEFINE COMMAND. Their precedence against other languages is
set by default to Automatic, use SIC PRIORITY afterwards to change it.

If an help file is provided, the command HELP will look into this file
for the language help (see SIC documentation for details). Else it will
display a summary of all the language commands and their translations.

5.8.11 DEFINE LOGICAL

[SIC\]DEFINE LOGICAL Var1[DIM1] Var2[DIM2] [...] [/GLOBAL]

LOGICAL variables can be multi-dimensional. Up to 7 dimensions can be
specified in the optional DIM field, with the following syntax:

Var[n1] or Var[n1,n2] etc... up to Var[n1,n2,n3,n4,n5,n6,n7]
where Var is the variable name and n1 to n7 are integer constants or
variables.

5.8.12 DEFINE REAL

[SIC\]DEFINE REAL Var1[DIM1] [Var2[DIM2] [...]] [/GLOBAL]

5 SIC LANGUAGE INTERNAL HELP 56

REAL variables can be multi-dimensional. Up to 7 dimensions can be spec-
ified in the optional DIM field, with the following syntax:

Var[n1] or Var[n1,n2] etc... up to Var[n1,n2,n3,n4,n5,n6,n7]
where Var is the variable name and n1 to n7 are integer constants or
variables.

5.8.13 DEFINE STRUCTURE

[SIC\]DEFINE STRUCTURE Str [/GLOBAL] [/LIKE MoldStr]

Define a new structure name. Structure naming follows the Fortran-90
convention, i.e. Str%SubStr%SubStrElement. Structure elements (including
sub-structures if needed) can be defined using command

DEFINE REAL Str%Element
etc. The %DATA element field is reserved to handle the N-Dimensional
data area associated to the structure, allowing Structure to mimick Im-
ages if needed.

An entire structure and all its associated members is deleted by a sin-
gle command DELETE Str /VARIABLE. A Structure can be defined like an-
other one using the /LIKE option.

5.8.14 DEFINE TABLE

[SIC\]DEFINE TABLE Var1 File1 Key1 [Var2 File2 Key2 [...]] [/GLOBAL]

Define variables associated to GILDAS images located in the files, if
specified. The variable type and dimensions are derived according to the
value of the keyword Key and the file content:
- READ or WRITE: use the type and dimensions from the file, and con-

nect the image in Readonly or ReadWrite access. The variable name
must not include any dimension field.

- DOUBLE, INTEGER or REAL: create a new table of the specified type.
The dimensions must then be specified in the dimension field of the
variable name, as for a standard variable. The associated file is
created, unless a star (’*’) is used as file name.

- EXTEND: take type and first dimensions from the file, but extend the
last dimension to the value specified in the dimension field. The
full syntax in this case is thus

DEFINE TABLE Var[Ldim] File EXTEND
where Ldim is the new value for the last dimension.

DEFINE TABLE does not create any additional variables for the image
header. See DEFINE IMAGE and DEFINE HEADER for this information.

5.8.15 DEFINE UVTABLE

[SIC\]DEFINE UVTABLE Var1 File1 Key1 [Var2 File2 Key2 [...]] [/GLOB-

5 SIC LANGUAGE INTERNAL HELP 57

AL]

Define variables associated to both the content and the header of the
GILDAS UV Table located in the specified files. The files must be UV Ta-
bles, a version of 2-D tables with some conventions for the interpreta-
tion of columns and an image-like header.

When creating a new file, if the file name has the extension ".tuv", the
command creates a TUV table (transposed UVT) with the corresponding
header elements transposed.

See HELP DEFINE HEADER for a description of the individual header vari-
ables.

5.8.16 DEFINE /GLOBAL

[SIC\]DEFINE Type Var1 [Var2 [...]] /GLOBAL

The /GLOBAL option specifies that the variables are global, instead of
being local to the current procedure. Local variables have precedence
over global variables.

The /GLOBAL option is incompatible with DEFINE FUNCTION and DEFINE COM-
MAND.

5.8.17 DEFINE /LIKE

[SIC\]DEFINE Type Var1 [Var2 [...]] /LIKE VarLike
[SIC\]DEFINE IMAGE Var1 File1 Key1 [...]] /LIKE VarLike
[SIC\]DEFINE STRUCTURE Struct1 [Struct2 [...]] /LIKE StructLike

The /LIKE option allows definition of Type REAL, LOGICAL, DOUBLE or IN-
TEGER arrays with dimensions identical to those of the (existing) Var-
Like array. IMAGEs and TABLEs can also be defined in this way. The di-
mension field must not be specified in such a case.

/LIKE can also be used in structure context: the new structure will be
filled with a tree identical to the StructLike one (which can be a HEAD-
ER or an IMAGE). However, the %DATA area of Structures and Images is ig-
nored in this process, and should be defined separately if needed.

The /LIKE option is incompatible with DEFINE FUNCTION, DEFINE COMMAND,
as well as DEFINE HEADER and DEFINE FITS.

5.8.18 DEFINE /TRIM

[SIC\]DEFINE IMAGE|HEADER Var1 File1 Key1 [Var2 File2 Key2 [...]]
/TRIM [Rank] [/GLOBAL]

5 SIC LANGUAGE INTERNAL HELP 58

Attempt to trim trailing degenerate dimensions up to the specified Rank.
If no Rank is given, trim all possible trailing degenerate dimensions.

If Rank is positive, the defined header or image will have exactly Rank
dimensions. An error occur if the corresponding file has non-degenerate
dimensions beyond this rank. If the file is of lower dimensionality
than the specified Rank, its dimensionality is extended by adding de-
generate dimensions up to Rank.

If Rank is negative, trim all possible trailing degenerate dimensions,
and return an error if the final dimensionality remains larger than
Rank.

Examples:
Assume file.gdf contains a 3-D array of dimensions [Nx,Ny,1]
DEFINE IMAG A file.gdf READ

will return the 3-D array A[Nx,Ny,1]
DEFINE IMAG A file.gdf READ /TRIM 4

will return the 4-D array A[Nx,Ny,1,1]
DEFINE IMAG A file.gdf READ /TRIM 1

will produce an error (same with /TRIM -1)
DEFINE IMAG A file.gdf READ /TRIM -4

will return the 2-D array A[Nx,Ny]
DEFINE IMAG A file.gdf READ /TRIM

will also return the 2-D array A[Nx,Ny]

5.9 DELETE

[SIC\]DELETE /VARIABLE|/SYMBOL|/FUNCTION Name1 [Name2 [...]]

Delete specified variables, symbols or functions. For IMAGE variables,
also frees the corresponding file.

5.10 DIFF

[SIC\]DIFF Var1|File1 Var2|File2

List the differences between two entities. Each entity can be either a
Sic variable name or a GDF file name (images, cubes, UV tables,...).
Comparison is made on their headers (if both variables provide a header)
and/or their data (if both variables provide a data array).

The result of the last comparison (true/false) is saved in the logical
variable SIC%DIFF.

5.11 EDIT

[SIC\]EDIT [File_Name]

5 SIC LANGUAGE INTERNAL HELP 59

Without argument, EDIT dumps the Stack on a file named STACK.DEFEXT
where DEFEXT is the default macro extension specified by the program or
by the user using command SIC\SIC EXTENSION, and then calls a text edi-
tor to edit this file. If a file name is given, the specified file is
edited.

The editor to be chosen is defined by the logical name GAG_EDIT, which
you can define in your $HOME/.gag.dico file. Command SIC EDIT NewEditor
can also be used to re-define the choice of the editor.

5.12 ELSE

[SIC\]ELSE [IF Logical_expression [THEN]]

Conditional directive in an IF-END IF block. Similar to Fortran ELSE and
ELSEIF statements, but note that here the space between ELSE and IF is
compulsory, while the THEN keyword is optional. If the compulsory space
bothers you, just define the following symbol

SYMBOL ELSEIF "SIC\ELSE IF"

5.13 END

[SIC\]END Procedure|Help|Data|If

[SIC\]END IF

Mark the end of an IF block. Normal execution resumes. The symbol ENDIF
is defined as an abbreviation of SIC\END IF.

[SIC\]END Procedure|Help|Data

Terminate the definition of a new Procedure, Help file, or Data file.
See command BEGIN for details.

5.14 EXECUTE

[SIC\]EXECUTE CommandString

Execute the command line given as argument. It can be an explicit char-
acter string, a string variable contents, or a mixture of both. For ex-
ample:

! Simple command
SIC> SIC\EXECUTE EXAMINE

! Command with several words
SIC> SIC\EXECUTE "EXAMINE /GLOBAL"

! Command stored in variable

5 SIC LANGUAGE INTERNAL HELP 60

SIC> DEFINE CHARACTER*32 COMMAND
SIC> LET COMMAND "EXAMINE /GLOBAL"
SIC> SIC\EXECUTE ’COMMAND’

! Command stored in several variables
SIC> DEFINE CHARACTER*32 COMMAND OPTION
SIC> LET COMMAND "EXAMINE"
SIC> LET OPTION "/GLOBAL"
SIC> SIC\EXECUTE ’COMMAND’" "’OPTION’

The error status of the executed command is propagated to the EXECUTE
command, except for @ (errors raised by @ are lost).

5.15 EXAMINE

[SIC\]EXAMINE [Name1] [Name2] [...] [NameN] [/GLOBAL] [/HEADER]
[/ADDRESS] [/ALIAS] [/PAGE] [/SAVE]

List variables.

EXAMINE without argument gives the list of known variables with their
respective types. Each variable name is followed by its definition and
the keywords "GBL" for GLOBAL (interpreter level 0) variables, LCL(lev)
for LOCAL variables at interpretor level "lev" (viz., in a procedure),
WR for READ/WRITE variables, RD for READONLY variables. The option /PAGE
can be used to examine long outputs page by page.

With one or more arguments, EXAMINE will usually type the content of the
specified variables (local variables have priority). But:
- If the argument ends by the % character, it is assumed to indicate a

structure or an image header, and all associated header variables
are listed.

- Wildcarding is permitted: if the argument contains one or more "*"
character, all compatible variables names are listed.

- In any case, typing an ambiguous variable name will generate a list
of choices.

With the /GLOBAL option, lists only the GLOBAL variables, as opposed to
LOCAL variables (i.e, in a loop or a macro)

With the /HEADER option, lists only the variables having an associated
header (i.e., the known images).

With the /ALIAS option, lists only the Aliases and their association.

The /ADDRESS option is used for debugging. It gives the internal vari-
able descriptor.

5 SIC LANGUAGE INTERNAL HELP 61

5.15.1 EXAMINE /SAVE

[SIC\]EXAMINE Variable /SAVE OutputFile

THIS OPTION IS EXPERIMENTAL AND MIGHT BE REMOVED OR RENAMED IN THE FU-
TURE WITHOUT ADVISE.

The output of the command EXAMINE is written in the named file instead
of terminal. The output is specially formatted under the form

Variable = Value
or
Array = Val1 Val2 Val3 ! i.e. flatened array

This way, the output file can be replayed in Sic as a procedure in a
save-and-reload process. This makes most sense when examining structures
with the syntax EXA MYSTRUCT% /SAVE MYOUTPUT.

5.16 EXIT

[SIC\]EXIT [Code] [/NOPROMPT]

EXIT always ends SIC execution, at any level. An error status can be set
on return to the shell by passing an integer code (default 0). In inter-
active sessions, <^D> has the same behaviour as EXIT.

On the opposite <^Z> only ends the current level of execution, so that
when typed at the top level, <^Z> also ends the session. Note that <^Z>
may be trapped when interactive editing is enabled.

The option /NOPROMPT will disable any prompt at exit time, for programs
(or their dependencies) which prompt for an answer before leaving.

Note that end of SIC execution does not necessarily means end of program
execution: SIC may be entered again later by the calling program.

5.17 FOR

[SIC\]FOR Loop_Variable n1 n2 n3 TO n4 BY n5 n6 TO n7
[SIC\]FOR Loop_Variable /IN List_Variable
[SIC\]FOR /WHILE Logical_Expression

Open a FOR-NEXT loop to be executed for real values in the list (FOR
Variable), or any values (including strings) given in the /IN option,
or until a logical expression becomes false (FOR /WHILE).

Up to 9 loops may be nested in any way. The loop can be exited at any
time with the command BREAK (see HELP BREAK for details).

5 SIC LANGUAGE INTERNAL HELP 62

If the loop is entered interactively at the prompt, the last character
of the prompt becomes a ’:’ instead of ’>’, and all subsequent commands
typed in until NEXT are the body of the loop.

* Indexed loops: FOR Loop_Variable n1 n2 n3 TO n4 BY n5 n6 TO n7
See HELP FOR Indexed

* Generalized loops: FOR Loop_Variable /IN List
See HELP FOR /IN

* Conditional loops: FOR /WHILE Logical_Expression
See HELP FOR /WHILE

The Loopriable is the name of a SIC variable created by the FOR command
and must not be an existing variable name.

5.17.1 FOR Indexed

[SIC\]FOR Loop_Variable n1 n2 n3 TO n4 BY n5 n6 TO n7

The loop specified in this example will execute for the following
values of the index :

n1
n2
n3, n3 + n5, n3 + 2 n5, n3 + 3 n5, ... , n4
n6, n6 + 1, n6 + 2, ... , n7

(assuming that n4-n3 is a multiple of n5, n7-n6 an integer).

Loop variables are undefined outside the loop, and must not be previous-
ly defined. Here, the loop variables are Double Precision numbers, and
non-integer start, end, and step can be used. Invalid ranges are ignored
at execution time: e.g. in the previous example, the loop would not be
executed for n3 TO n4 BY n5 if n5*(n4-n3) < 0, but no error is signaled.
Increments of 0 produce an error. The index of the loop will be substi-
tuted to the loop variable Loop_Variable during loop execution.

5.17.2 FOR /IN

[SIC\]FOR Loop_Variable /IN List_Variable

Execute a generalized loop, for all the values in List_Variable.
List_Variable is a 1-D (or scalar) variable of any type, i.e. numerics,
logicals, or character strings. The loop variable is undefined outside
the loop, and must not be previously defined. It will be implicitly de-
fined as a scalar with the same type and kind as the List_Variable. For
example:

5 SIC LANGUAGE INTERNAL HELP 63

DEFINE CHARACTER*8 files[3]
LET files "a.txt" "b.txt" "c.txt"
FOR f /IN files
SAY ’f’

NEXT f
The loop executes with the Loop_Variable taking the value of each ele-
ment of the List_Variable, in order.

5.17.3 FOR /WHILE

[SIC\]FOR /WHILE Logical_Expression

Conditional loops execute until the logical expression becomes false.
For example FOR /WHILE .TRUE. will execute forever.

Such loops have no associated loop variable.

5.18 HELP

[SIC\]HELP [FUNCTION|TASK|RUN|GO] [Topic [Subtopic|*]]

Display the help of various Gildas tools. There may be two levels of
help available. In this case, a wildcard will display all the subtopic
helps at once. You can use the switch SIC HELP to customize the way long
helps are displayed (see HELP SIC HELP).

HELP
Without an argument, HELP gives the list of available languages and
commands.

HELP LangName\
With a language name followed by a backslash (e.g. HELP SIC\), HELP
gives a one line description of all commands specific to this lan-
guage.

HELP Command [Subtopic]
With a command name, the help for this command is displayed. Ambigui-
ties can be fixed by prefixing the command by its parent language
(e.g. HELP SIC\DEFINE). A subtopic (e.g. an option name) can be given
as second argument.

Subtopics which appear in capital letters when listed by HELP Command
are not case-sensitive, while Subtopics appearing in mixed-cases are
case-sensitive.

HELP FUNCTION [Name]

5 SIC LANGUAGE INTERNAL HELP 64

With the keyword FUNCTION alone, it gives a list of all functions
available. With a function name added, it gives a detailed help for
this function. There are 3 kind of functions: 1) functions with native
support in the SIC interpreter, 2) program-defined functions (specific
to each program), 3) user-defined functions (defined with DEFINE FUNC-
TION).

HELP TASK [Group|?]
With the keyword TASK, it gives a one line description of all avail-
able tasks. A task group name can be given as second to restrict the
list to this group. Type HELP TASK ? for the list of available groups.

HELP RUN TaskName [VarName]
With the keyword RUN followed by a task name, the help for this task
is displayed.

HELP GO ProcName [Subtopic]
With the keyword GO followed by a procedure name (lower case sensi-
tive), the help for this procedure is displayed.

HELP SIC SYNTAX
Get some basic help on the SIC interpreter syntax.

5.19 IF

[SIC\]IF Logical_Expression [THEN]
[SIC\]IF Logical_Expression Command [Arguments]

The first form starts a conditional IF block. The behaviour of IF blocks
is similar to structured Fortran. The THEN keyword is optional.
The second form defines a logical IF statement, i.e. it uses a single
line with no possibility of alternate execution (no ELSE choice). When
the argument following the logical expression is not THEN, it is assumed
to be a command which will be interpreted, together with the next argu-
ments, if the logical expression evaluates as true.

This command can only be used within a procedure: interactive users are
expected to be able to make their decisions themselves.

The logical expression must be a single argument (no blanks); composite
expressions using .AND. or .OR. operators are supported. Logical func-
tions like EXIST, FILE, or FUNCTION can also be used (see HELP FUNCTION
for details).

5.20 IMPORT

[SIC\]IMPORT Package

5 SIC LANGUAGE INTERNAL HELP 65

Dynamically import a package (i.e. load its languages and perform its
initialization) in current scope. This allows to load another package
without closing (and loosing) the current session.

This feature is currently only available for: ASTRO, CLASS and MAPPING.

5.21 LET

[SIC\]LET Variable [=] [Expression]
[SIC\]LET Variable [=] Expression /CHOICE Value_1 ... Value_n
[SIC\]LET Variable [=] Expression /FILE Filter
[SIC\]LET Variable [=] Expression /FORMAT format_string
[SIC\]LET Variable [=] Expression /FORMULA
[SIC\]LET Variable [=] Expression /INDEX Value_1 ... Value_n
[SIC\]LET Variable [=] Expression /LOWER
[SIC\]LET Variable [=] Expression /NEW Type [Attr]
[SIC\]LET Variable [=] Expression /PROMPT "Explanatory text"
[SIC\]LET Variable [=] Expression /RANGE Min Max
[SIC\]LET Variable [=] OldVariable /REPLACE
[SIC\]LET Variable [=] Value_1 ... Value_n /RESIZE
[SIC\]LET Variable [=] Expression /SEXAGESIMAL
[SIC\]LET Variable [=] Val1 ... ValN /RESIZE
[SIC\]LET Variable /STATUS Read|Write
[SIC\]LET Variable [=] Expression /UPPER
[SIC\]LET Variable [=] Expression /WHERE Condition_mask

Assign a value to a variable. The variable must already be defined (see
HELP DEFINE) unless the /NEW option is present. Logical expression re-
sults cannot be assigned to non logical variables, and vice versa. All
numerical expression evaluations are done in double precision, and auto-
matically converted to the type of (numerical) variable assigned.

The equal sign may be always omitted EXCEPT when using Free Syntax (see
HELP LET Free_Syntax).

If no value is assigned to the Variable, the user will be prompted for
the variable value. The Prompt text can be defined with the /PROMPT Op-
tion.

VECTOR OPERATION:

Operations are vectorial, i.e. a full array is computed at the same
time. The variable name can define a subset of an known array, such as:

DEFINE REAL A[4,5,6] B[4]
LET A[,,3] = 1.0 ! or equivalently LET A[3] = 1.0
LET A[,2,2] = B ! or equivalently LET A[2,2] = B

These commands assign the value 1.0 to A[i,j,3], with i running from 1
to 4 and j from 1 to 5, and B[k] to A[k,2,2] for k from 1 to 4. Implic-

5 SIC LANGUAGE INTERNAL HELP 66

it transposition is now allowed, though still somewhat experimental:
both A[,2,3] and A[2,,3] are valid. A range of indexes can be specified
rather than one index: for the above example A[3:5] is a valid 4x5x3 ar-
ray, A[2:4,,] is a 3x5x6 array.

IMPLICIT LOOPS:

In addition to vector computing, it is possible to assign an array using
"implicit loops", i.e. functions of the array indices such as

DEFINE REAL A[4,5]
LET A[I,J] = (I-J)**2

Implicit loops cannot be mixed with variable index values.

CONDITION MASK (/WHERE option):

Vector assignment can be done only where a specified logical array (or
logical array expression) is true, using the /WHERE option. See HELP LET
/WHERE.

5.21.1 LET Free Syntax

The LET command may be omitted if no option is present, and if the
SIC syntax is set to FREE. In this case, the = sign is mandatory. In
FIXED syntax, the LET command is compulsory, but the = sign optional. In
FREE syntax, commands lines like

A[I,J] = SIN((2*I+J)/PI)
where A is a known variable, are recognized as assignement and automati-
cally expanded to the equivalent FIXED syntax

LET A[I,J] SIN((2*I+J)/PI)
In case of conflict between a variable name and a (complete) command
name, an error message is issued. Free syntax cannot be used for the
LET /WHERE command. Command SIC SYNTAX [Free|Fixed] can be used to tog-
gle between Fixed and Free syntax if needed.

5.21.2 LET GUI Widget

GUI (Graphic-User-Interface) input mode:

If command GUI\PANEL has been issued before, the LET command defines
widgets in the master window defined by GUI\PANEL. The widget is a sim-
ple prompt when option /PROMPT is set, a slider if option /RANGE is
present, a list of choices if option /CHOICE or /INDEX is given, and a
selection of files with the specified filter when option /FILE is speci-
fied. If neither of these options is present, the LET command works in
the usual way.

5 SIC LANGUAGE INTERNAL HELP 67

The widgets are created and activated by command GUI\GO. Standard input
can be used, and pressing button GO will define all the variables as
specified. If button ABORT is pressed instead, none of the variables are
modified and an error is returned. Error handling is available.

Options related to the GUI Widget mode are: /CHOICE, /FILE, /FORMULA,
/INDEX, /PROMPT and /RANGE

5.21.3 LET Structure

LET OutStructure% [=] InStructure%

Assign, in as much as possible, a structure to another one. The struc-
tures do not need to be identical: only matching structure elements are
copied.

In addition, the DATA area of Structures are ignored in this process: if
needed, they must be copied separately, e.g.

OutStructure%DATA = InStructure%DATA

5.21.4 LET /CHOICE

[SIC\]LET Variable [= Expression] /CHOICE Val1 ... ValN [*] [/PROMPT
"Prompt Text]

[SIC\]LET Variable [= Expression] /CHOICE List [/PROMPT "Prompt
Text]

[SIC\]LET Variable = Expression /CHOICE [/PROMPT "Prompt Text]
(GUI input mode)

Activate a choice widget which will return a value among the specified
list. The widget will be created by command GUI\GO. This option is usu-
ally combined with a /PROMPT option. If the last specified value is an
asterisk, the choice widget will be editable and any value will be
valid.

The choice list can also be given as a character array variable.

If the /CHOICE has no argument, the Variable will be displayed, but can-
not be modified. This mode can be useful to display control parameters
in a menu, or variables which result from operations with other vari-
ables.

5.21.5 LET /FILE

[SIC\]LET Variable [= Expression] /FILE Filter [/PROMPT "Prompt

5 SIC LANGUAGE INTERNAL HELP 68

Text]
(GUI input mode)

Activate a "file" widget to select a file according to the specified
filter. The widget will be created by command GUI\GO. This option is
usually combined with a /PROMPT option.

5.21.6 LET /FORMAT

[SIC\]LET Variable [=] Expression /FORMAT format_string

Use the specified format to convert the expression into a character
string and assign it to the requested (character) variable. For example:
define character c*6
LET C acos(-1.0) /FORMAT F6.3
exa c
c = 3.142

5.21.7 LET /FORMULA

[SIC\]LET Variable [=] Expression /FORMULA [/other_option]
(GUI input mode)

Use Expression as a formula in GUI input mode, rather than only the val-
ue of the expression. This option can be combined with any other GUI re-
lated option, in particular /PROMPT.

5.21.8 LET /INDEX

[SIC\]LET Variable [= Expression] /INDEX Text_1 Text_2 ... Text_n
(GUI input mode)

Activate a choice widget which will return an integer value correspond-
ing to the index of the selected text among the specified list. The wid-
get will be created by command GUI\GO.

5.21.9 LET /LOWER

[SIC\]LET Variable [=] Expression /LOWER

Convert the output to lower case prior to assignment. To convert a vari-
able, use e.g. for variable C

let c ’c’ /lower

5.21.10 LET /NEW

[SIC\]LET Variable [=] Expression /NEW Type [Attr]

Define the variable and assign it at the same time. Type is the type of

5 SIC LANGUAGE INTERNAL HELP 69

the variable (INTEGER, REAL, DOUBLE, LOGICAL, or CHARACTER). INTEGER
stands for SHORT or LONG integer depending on the current SIC INTEGER
rule.

The optional Attr argument is used to specify whether the newly created
variable is LOCAL (default) or GLOBAL. See also the SIC\DEFINE command.

5.21.11 LET /PROMPT

[SIC\]LET Variable [=] [Expression] /PROMPT "Explanatory text"
(GUI input mode and Command line mode)

Create a text widget, with a specified prompt, to return a value or
valid expression for the variable. The text widget can be pre-loaded
with an expression or value(s). Standard input will be available once
the widget is created by command GUI\GO.

5.21.12 LET /RANGE

[SIC\]LET Variable [=] [Expression] /RANGE Min Max
(GUI input mode)

Activate a slider widget to return a value within the specified range.
The widget will be created by command GUI\GO.

5.21.13 LET /REPLACE

[SIC\]LET NewVariable [=] OldVariable /REPLACE

Rename OldVariable into NewVariable. The content and location of the
variable remains unchanged: only the name is modified. If the variable
is a structure, its elements are renamed accordingly.

5.21.14 LET /RESIZE

[SIC\]LET Variable [=] Val1 ... ValN /RESIZE

Automatically resize the variable according to the number of values to
be stored in the output variable. For example:

SIC> define integer a[2]
SIC> let a 1 2 3 /resize
W-LET, Resizing array A to length 3
SIC> exa a
A is an integer Array of dimensions 3

1 2 3

This feature makes sense when the array size is not known at the time
the procedure in written, but have to be decided instead from unpre-
dictable inputs at run time (e.g. user input in widgets). It applies

5 SIC LANGUAGE INTERNAL HELP 70

(only) to 1D arrays of any kind (numeric, logical, character). The type,
kind, rank and level (global/local) of the output variable is not modi-
fied during the process. Read-only and program-defined variables can not
be resized.

5.21.15 LET /SEXAGESIMAL

[SIC\]LET Numeric [=] [+|-]DD[:MM[:SS.SS]] /SEXAGESIMAL [D|H|R]
[D|H]

[SIC\]LET String [=] Value /SEXAGESIMAL [D|H] [D|H|R]

The /SEXAGESIMAL option allows to use sexagesimal expressions in assign-
ments. This option is only valid for scalar variables. Units of the op-
erands can be provided by optional characters chosen in D)egrees, H)ours
or R)adian. The first unit is for the output, the second for the input.
Radian is an invalid unit for the sexagesimal string. Degrees are as-
sumed by default for both operands.

The first form converts the sexagesimal expression into a numerical val-
ue stored in the assigned variable. Mathematical expressions can be used
for each elements, provided they are separated by a semicolon.

The second form converts a numerical value into the sexagesimal notation
stored in the assigned character variable.

5.21.16 LET /STATUS

[SIC\]LET Variable /STATUS Read|Write

Modify a variable status to/from ReadOnly from/to Writeable.

5.21.17 LET /UPPER

[SIC\]LET Variable [=] Expression /UPPER

Convert the output to upper case prior to assignment. To convert a vari-
able, use e.g. for variable C

let c ’c’ /upper

5.21.18 LET /WHERE

[SIC\]LET Variable = Expression /WHERE Condition_mask

The LET command allows setting variables only where a given condition
mask is .TRUE.. The condition mask can be a logical array or a logical
expression (of same dimension as the result variable). Implicit loops
can be used in conjunction to the /WHERE option.

For example

5 SIC LANGUAGE INTERNAL HELP 71

DEFINE REAL A[4,5] B[4,5]
LET B[I,J] = I+J
LET A[I,J] = (I-J)**2 /WHERE COS(I).GT.SIN(J) ! 1
LET A[I,J] = SIN(I+J) /WHERE B.GT.5 ! 2

is equivalent (in terms of results, but about 500 times faster) to the
loops

DEFINE REAL A[4,5] B[4,5]
LET B[I,J] = I+J

! 1
FOR J 1 to 5

FOR I 1 to 4
IF (COS(I).GT.SIN(J)) THEN

LET A[I,J] = (I-J)**2
ENDIF

NEXT
NEXT

! 2
FOR J 1 to 5

FOR I 1 to 4
IF (B[I,J].GT.5) THEN

LET A[I,J] = SIN(I+J)
ENDIF

NEXT
NEXT

Note in the example above that implicit variables can be used. However,
the following syntax is non valid,

LET A[I,J] = SIN(I+J) /WHERE B[I,J].GT.5
because implicit variables cannot appear as indexes to an operand array
(B), but only as indexes to the result array (A) or as variables as in
SIN(I+J). The correct syntax would be

LET A[I,J] = SIN(I+J) /WHERE B.GT.5
The following syntax is also non valid

LET A = B /WHERE B[I,J].GT.LOG(I+J)
because implicit variables cannot be defined by an operand array (B),
but only by the result array. The correct syntax would be

LET A[I,J] = B /WHERE B.GT.LOG(I+J)

5.22 MESSAGE

[SIC\]MESSAGE Severity ProcedureName "Message"
[SIC\]MESSAGE Severity ProcedureName Arg1 Arg2 ... ArgN [/FORMAT

Fmt1 Fmt2 ... FmtN]

Print a message using the same mechanism as the one used by Gildas pro-
grams. In particular, it will be printed or not, to the terminal and/or
to the message file, depending on the filters that currently apply to
messages.

5 SIC LANGUAGE INTERNAL HELP 72

- The severity must be a single letter from one of the following:
F)atal, E)rror, W)arning, R)esult, I)nfo, D)ebug, T)race, C)ommand,
U)nknown.

- The procedure name is a free character string.
- The message must have at least one component. Multiple remaining argu-
ments will be printed out spaced by a single space. Enclose with dou-
ble-quote a character string if you want to use more than one space.

- If /FORMAT option is invoked, each argument is displayed using its as-
sociated format. Formats are Fortran ones (so may be slightly machine-
dependent) like a10, i2, f5.2 and so on.

Example:
SIC> MESSAGE I FOO "Hello world!"
I-FOO, Hello world!

For more information on message filters, see the HELP for the SIC MES-
SAGE command.

5.23 MFIT

[SIC\]MFIT Yvar=Func(Xvar,&A,&B,...) [/START A1 B1 ...] [/STEP A2 B2
...] [/EPSILON e] [/WEIGHTS w] [/METHOD m] [/QUIET]

or
[SIC\]MFIT Filename [/START A1 B1 ...] [/STEP A2 B2 ...] [/EPSILON

e] [/WEIGHTS w] [/METHOD m] [/QUIET]

Perform a least squares fit using the specified Method. The least square
fit tries to adjust function Func of variable Xvar and parameters &A,
&B, ... to match variable Yvar.

Any function or combination of functions known by SIC may be used.
Blanks are supported in the formula. The ’=’ sign is required.

Fit parameter DUMMY names are &A...&Z . Already defined SIC variables
may be used in the formula as long as they don’t match the variables
used by MFIT. The resulting parameters will be stored in the structure
variable MFIT%. An array with weights may be given by option /WEIGHTS.
It must match the dimension of the formula result (defaulted to uniform
weight).

The formula can also be provided by a disk file (default extension
.GRF), where lines beginning with an exclamation mark are treated as
comments. Inside the file, blanks can be used in the formula, which may
be spread over several lines.

The command MFIT defines the following global SIC variables to hold its
results:

MFIT%PAR : Fit parameters

5 SIC LANGUAGE INTERNAL HELP 73

MFIT%ERRORS : The parameter errors, if they have been computed
MFIT%MATH : Text string containing the formula with replaced dummies
MFIT%FIT : Found approximation (the application of MFIT%MATH)
MFIT%RES : Residuals (i.e. Yvar-MFIT%FIT)
MFIT%STATUS : .FALSE. on successful completion.

Suppose you read X,Y=f(X) and Z (errorbar on Y) in the 3 arrays X, Y and
Z. You could change Z into weights (for example SIC\LET Z 1|Z^2), then
fit a cubic polynomial regression in variables X,Y by typing:

MFIT Y=(&A*X^3+&B*X^2+&C*X+&D) /WEIGHTS Z
The MFIT command will print the used formula:

I-MFIT, Formula (stored in variable MFIT%MATH) :
(MFIT%PAR[01]*X^3+MFIT%PAR[02]*X^2+MFIT%PAR[03]*X+MFIT%PAR[04])

The array MFIT%PAR will contain MFIT%PAR[1]=value of ’&A’, and so on...
to be used afterwards.

5.23.1 MFIT /EPSILON

This option is used to specify the desired tolerance. Its interpre-
tation is method dependent. For SIMPLEX and POWELL, it means the rela-
tive deviation of the mean squared difference of two fit iterations. For
SLATEC, which uses non-reduced chi-2, it is the absolute difference be-
tween two iterations. For ANNEAL, its interpretation is totally differ-
ent.

Use default value 0 to let the program guess. In subtle cases, or to
gain speed in case a coarse result is desired, use values around 1D-5
for SIMPLEX and POWELL, and of order 1 for SLATEC. For ANNEAL, see de-
tails in the /METHOD option.

Note that this is not the absolute error of the fit parameters.

5.23.2 MFIT /METHOD

ANNEAL Simulated annealing technique. This may require a very large
number of function evaluation.

POWELL Gradient using the Powell method (see Press et al. for de-
tails).

SIMPLEX Classical Simplex amoeba search
ROBUST A combination of Simplex + Slatec, to be used with large ini-

tial steps.
SLATEC Modified Levenberg Marquardt method with adaptive steps, as

implement in the Slatec library.

All methods require a proper choice of initial values and steps. The AN-
NEAL method is much more robust against poor guesses, but may require 10
to 100 times more function evaluations than any other.

5 SIC LANGUAGE INTERNAL HELP 74

5.23.3 MFIT /QUIET

Require MFIT to be silent (useful to avoid too many messages in
loops).

5.23.4 MFIT /START

[SIC\]MFIT Y=f(X,&a,...) /START A1 B1 ...

A1 B1 ... are used to pass starting guesses for the parameters &A &B
(defaulted to 1.0). The starting values should not be too far from a po-
tential solution, otherwise the convergence may not be possible.

5.23.5 MFIT /STEP

[SIC\]MFIT Y=f(X,&a,...) /STEP A2 B2 ...

A2 B2 ... are used to pass the unity vectors (steps) for the iteration
on parameters &A &B (defaulted to 0.25). Poor choice of initial steps
may lead to non convergence. Too small steps will not help converging
when one starts too far from the solution. Too large steps may lead to
incorrect evaluation of the parameter errors. The optimal step for the
determination of the errors is about the error bar, so that all parame-
ters become dimensionless.

5.24 MODIFY

[SIC\]MODIFY VarName|GDFName [/FREQUENCY Linename RestFreq] [/VELOC-
ITY Velocity] [/SPECUNIT FREQUENCY|VELOCITY]

Modify consistently the spectroscopic axis of a lmv cube or a Sic struc-
ture of type IMAGE, HEADER, or UVTABLE.

The spectroscopic axis can be changed to the alternate unit with the op-
tion /SPECUNIT. By default, the unit is unchanged.

5.25 NEXT

[SIC\]NEXT

Depending on the context, NEXT has one of two possible interpretations:
- If typed during loop definition, NEXT indicates the end of the defi-

nition and starts the execution.
- If encountered during loop execution, NEXT will skip all instruc-

tions remaining in the Loop Buffer and resumes the Loop execution at
its first line for the next value of the index. This typically oc-
curs as an error recovery (ON ERROR NEXT).

The commands will be echoed to the terminal if the VERIFY switch is ON.

5 SIC LANGUAGE INTERNAL HELP 75

5.26 ON

[SIC\]ON Status [Command]

Perform the Command when Status in encoutered. Only the ON ERROR case is
available. See subtopic ERROR for details.

5.26.1 ON ERROR

[SIC\]ON ERROR [Command]

This command changes the current error recovery action.

By default, a PAUSE is automatically generated by any error during exe-
cution. Without argument, ON ERROR resets to this default. Use the SIC
command (without argument) to display the current ON ERROR status.

The error recovery can be changed and any other valid command line Com-
mand can be activated instead of PAUSE when an error occurs, using the
command ON ERROR Command. A very useful error recovery command for loops
is NEXT, which enables skipping the remaining commands of the loop when
something went wrong, and resumes the loop at for the following index
value.

Note that the ON ERROR command does not affect the behaviour on <^C>
trapping, which always returns a PAUSE. The ON ERROR command is only
valid within the procedure which declared it.

5.27 PARSE

[SIC\]PARSE [/OptionName1 [Nargmin [Nargmax]]] ... [/OptionNameN
...]

Parse the array PRO%ARG in order to mimic the options mechanism provided
by a standard command.

When a procedure is executed, the array PRO%ARG is filled with the argu-
ments passed to the procedure. If you invoke the command PARSE with some
option names and required number of arguments, it will parse the argu-
ments to gather them by options and option arguments into the structure
PRO%PARSE%. The command PARSE will check that the caller has provided
known options and correct number of arguments, else an error will be
raised.

For example, if you invoke your procedure like this:

SIC> @ myprocedure 123 /MYOPTION "ABC"

the PRO%ARG array will contain

5 SIC LANGUAGE INTERNAL HELP 76

SIC_3> EXA PRO%ARG
PRO%ARG is a character*256 Array of dimensions 3
123
/MYOPTION
ABC

Invoking the command PARSE in your procedure e.g.
SIC_3> PARSE /MYOPTION /OTHEROPTION

will gather the command and the 2 option arguments like this:
SIC_3> EXA PRO%PARSE%
PRO%PARSE% ! Structure GLOBAL
PRO%PARSE%COMMAND ! Structure GLOBAL
PRO%PARSE%COMMAND%NARG = 1 ! Integer GLOBAL RO
PRO%PARSE%COMMAND%ARG is a character*256 Array of dimensions 1
PRO%PARSE%MYOPTION ! Structure GLOBAL
PRO%PARSE%MYOPTION%NARG = 1 ! Integer GLOBAL RO
PRO%PARSE%MYOPTION%ARG is a character*256 Array of dimensions 1
PRO%PARSE%OTHEROPTION ! Structure GLOBAL
PRO%PARSE%OTHEROPTION%NARG = -1 ! Integer GLOBAL RO

Namely: the command was passed 1 argument (available in the associated
ARG array), the option MYOPTION was passed 1 argument, and the option
OTHEROPTION was absent (NARG=-1). An option is present if NARG>=0.

You can control the number of required of arguments to the command and
the options. Syntax is "/OptionName [Nargmin [Nargmax]]". If Nargmax is
absent, it defaults to Nargmin. If Nargmin is absent, it means no spe-
cific constraint. For example:

SIC_3> PARSE 1 /MYOPTION 2 3 /OTHEROPTION

means that exactly 1 argument must be passed to the command (before the
options), that at least 2 and at most 3 arguments are required for /MY-
OPTION, and that there is no check for /OTHEROPTION.

5.28 PAUSE

[SIC\]PAUSE "Message"

Set a break point in a Loop or a Macro. PAUSE returns control to user
when executed in a macro. The prompt is changed to indicate the execu-
tion level. Any valid command can be executed while in interrupt mode.
The execution can be resumed by typing CONTINUE, aborted by QUIT (or RE-
TURN, depending whether an error status is desired). NEXT may also be
used for the Loop.

If PAUSE is followed by an argument, this argument is typed when the

5 SIC LANGUAGE INTERNAL HELP 77

pause occurs. When typed in interactive, PAUSE generates a traceback of
the levels of execution in SIC.

A pause is generated after completion of the current command if you type
<^C> on the keyboard. This allows you to interrupt any sequence of com-
mands (even if ON ERROR CONTINUE has been typed).

5.29 PYTHON

[SIC\]PYTHON
[SIC\]PYTHON PythonCommandLine
[SIC\]PYTHON PythonScript.py

Any form of the PYTHON command starts the Python interpreter and inter-
communication between SIC and Python at first call. Subsequent call do
not repeat this initialization step.

Three main interaction schemes are available:
- Without argument, the user is exposed to the PYTHON prompt.

- With a Python command line as argument (any string following the
command), the command is transparently executed and the user recover
the SIC prompt. Arguments starting with a slash (/) should be pro-
tected by double-quotes: this avoids SIC to interpret it as a com-
mand option. Remember also that Python is case sensitive and the
string should take care of this. For example:

SIC> PYTHON print "Hello world!"
Hello world!
SIC> PYTHON def f(x): return x*x
SIC> PYTHON print f(2)
4
SIC>

- With a PythonScript.py as first argument (i.e. ending with ".py"),
the Python script is executed and then the user recover the SIC
prompt. Arguments following the script name can be recovered in the
sys.argv Python list. These arguments are interpreted by SIC before
being sent to the script. For example:

SIC> TYPE show_args.py
import sys
for i in sys.argv:
print i, type(i)

SIC>
SIC> PYTHON show_args.py PI ’PI’ 1.234
showrgs.py <type ’str’>
PI <type ’str’>
3.1415926535898 <type ’str’>
1.234 <type ’str’>

5 SIC LANGUAGE INTERNAL HELP 78

SIC>

5.30 QUIT

[SIC\]QUIT [ALL]

When typed after a pause, QUIT aborts the execution of the interrupted
level. QUIT returns an error to the previous level to signal this anoma-
lous end. The previous level is then also interrupted to allow a com-
plete error recovery. Note that this behaviour depends on the ON ERROR
command. QUIT can also be used to abort FOR-NEXT loop compilation.

If argument ALL is present, all nested procedures are aborted, and SIC
goes back to base level.

In interactive sessions, QUIT should be used instead of BREAK and RETURN
because it allows extra decision at run time. QUIT used as the error re-
covery command is equivalent to RETURN ERROR.

5.31 RECALL

[SIC\]RECALL [Arg]

This command retrieves command lines from the stack. The retrieved line
is edited if possible or immediately executed if not. If no argument is
present, the last command line is retrieved. If the argument is a num-
ber, the specified command is retrieved. If it is a character string,
the first (most recently entered) command which begins by this string is
recalled (in this case, the string may include a full language name or
no language at all).

When line editing is possible, commands can also be retrieved using the
Up arrow (or ^P) to recover the previous command, and Down arrow (or ^N)
to recover the next command.

If no line editing is available, you are prompted whether to execute or
not the recalled command.

5.32 RETURN

[SIC\]RETURN [BASE|ERROR]

End a procedure execution, transmitting or not an error if argument ER-
ROR is present.

If argument BASE is present, RETURN will end all nested procedures, and
give back control to base level, without transmitting any error.

5 SIC LANGUAGE INTERNAL HELP 79

5.33 SAY

[SIC\]SAY ["Text"] [’Expression’] [’Variable’] [/FORMAT ...]
[/NOADVANCE]

Display strings or character variable or implicitly formatted arithmetic
(or logical) expressions in the shortest possible format, unless the
/FORMAT option is used.

Simple text:
Simple text can be displayed by passing double-quoted strings to the
command, e.g.

SIC> say "Hello, world!"
Hello, world!

An unquoted argument will also be displayed "as is", like a simple
string.

Variable:
The contents of a scalar variable can be displayed by evaluating it
with single-quotes, e.g.

SIC> say ’pi’
3.1415926535898

Single quotes tell Sic to evaluate the variable and build a repre-
sentating string showing its contents. Then this string is passed to
SAY for display. Though Sic does its best to format the result, you
can customize the format with the option /FORMAT. Array variables
can not be displayed all at once using single quotes (but scalar
subsets can be evaluated e.g. SAY ’A[1]’), use SAY /FORMAT to dis-
play arrays.

Expression:
Expressions can be evaluated using single quotes, e.g.

SIC> say ’2*pi’
6.2831853071796

Like for variables, Sic evaluates the result and builds a represen-
tative string passed to SAY for display. Here also, the result must
be scalar.

Multiple arguments:
SAY can display as many strings as there are arguments to the com-
mand. Remember that in Sic, arguments are separated by one or more
spaces. Each argument can be of any kind explained above. For exam-
ple:
SIC> say "PI =" ’pi’
PI = 3.1415926535898

Note that the number spaces separating the input arguments are not
significant. In return, SAY will implicitely separate each string by
one blank.

5 SIC LANGUAGE INTERNAL HELP 80

Concatenated arguments:
Arguments can be concatenated by gluing any of the 3 basic kinds to-
gether. For example:

SIC> say "("’pi’")"
(3.1415926535898)

Note that there is no space between the components. In this case,
Sic does its best to evaluate each component and produce a single
temporary string concatenating all the individual representations.
Then this formatted string is passed to the command SAY for display.
Note that SAY sees only one argument (no blank = no separator => one
argument).
This syntax is not specific to SAY: it is a Sic feature which can be
used in other commands. Be careful you have no control on the format
choosen by Sic at concatenation time: /FORMAT is useless as it would
affect only the single temporary string seen by SAY after formatting
by Sic.

Output:
By default, SAY writes its output text on the terminal. However, it
can be redirected to a file thanks to the command SIC\SIC OUTPUT
(see HELP for details)..

GUI mode:
In GUI mode (see command GUI\PANEL), SAY writes the text in the cur-
rent window. SAY without parameters inserts a separator.

5.33.1 SAY /FORMAT

[SIC\]SAY Arg1 Arg2 [... ArgN] /FORMAT fmt1 fmt2 [...fmtn]

where fmt1 applies to Arg1, and so on. The format used is a Fortran for-
mat (so it may be slightly machine-dependent). Use formats like a10, i2,
f5.2, and so on. For example:

SIC> say ’2*pi’ /format F4.2
6.28

Be careful that each argument must be separated by blanks (see "Multiple
arguments" vs "Concatenated arguments" in the main HELP SAY).

Formatting a scalar variable:
Note also that the /FORMAT context, SAY is able to format a variable
without a pre-evaluation by Sic. For example:

SIC> say pi
pi
SIC> say ’pi’
3.1415926535898
SIC> say pi /format F4.2
3.14

5 SIC LANGUAGE INTERNAL HELP 81

SIC> say ’pi’ /format F4.2
3.14

1) In the first case, SAY considers unquoted arguments as simple
strings to be displayed "as is".

2) In the second case, using single-quotes, Sic translates the vari-
able contents to a text representation which is then given to SAY
(SAY is not aware that a floating point variable is involved
here).

3) In the third case, a floating point format is requested: this is
an indication to SAY that the argument must be a numeric variable
which has to be converted in a specific way. Here SAY knows it is
dealing with a variable.

4) And finally, the last form should be avoided! The single-quotes
are a request to Sic to translate the variable to a string using
its best format (same as second case). Then this string is passed
to SAY. As the /FORMAT option is present, SAY re-interprets the
ASCII string into a floating-point value, and then this value is
finally formatted to its final representation. In other words,
the following sequence occured: read variable name -> get its
floating-point value -> format as ASCII string -> read as float-
ing-point value -> format as ASCII string. There are two useless
steps, even if the result is correct as Sic avoids precision loss
when representing numeric values.

Formatting an array variable:
If the argument is an array variable, the associated format is ap-
plied repeatedly to all its individual values:

SIC> define real a[4]
SIC> let a 1.2 3.4 5.6 7.8
SIC> say a /format f6.2
1.20 3.40 5.60 7.80

SIC> say a /format 4(f6.2) ! Equivalent
1.20 3.40 5.60 7.80

Note however that the format can be used to display array values
grouped per line, e.g.

SIC> say a /format 2(f6.2) ! Group 2 values per line
1.20 3.40
5.60 7.80

Mixture of explicit values, evaluated expressions, scalar, and array
variables:

SIC> define integer n
SIC> let n 4
SIC> define integer id[n]
SIC> let id[i] i
SIC> say "My interferometer has " n " antennas numbered" -
SIC-? id " providing " ’n*(n-1)/2’ " baselines." -

5 SIC LANGUAGE INTERNAL HELP 82

SIC-? /format a i0 a i3 a i0 a
My interferometer has 4 antennas numbered 1 2 3 4 providing 6 ba

5.33.2 SAY /NOADVANCE

[SIC\]SAY Arg1 Arg2 [... ArgN] /FORMAT fmt1 fmt2 [...fmtn] /NOAD-
VANCE

Do not put a Carriage Return at end. This allows to add several vari-
ables on the same output line in subsequent SAY commands. For example
SAY Arg1 /Format fmt1 /NOADVANCE
SAY Arg2 /Format fmt2

is equivalent to SAY Arg1 Arg2 /Format fmt1 fmt2

The /NOADVANCE option is only active with the /FORMAT option, and if the
output (defined by SIC OUTPUT) is not the terminal.

5.34 SIC

[SIC\]SIC Arg1 Arg2 [... ArgN]

The SIC command has 5 categories of actions:

(1) File System Handling actions: (HELP SIC FileSystem)
These are used to manipulate files in a system independent ways from SIC
procedures.

APPEND COPY DELETE DIRECTORY FIND GREP MKDIR MODIFIED PARSE RENAME
(2) Procedure related operations (HELP SIC Procedure)

EXPAND EXTENSION MACRO OUTPUT SAVE VERIFY WHICH
(3) Customization and status (HELP SIC Customize)

These are used to toggle some mode of the SIC monitor, or control
some SIC monitor parameter. When called with no further argument,
the status of the item will be displayed.
EDIT ERROR HELP INTEGER LOGICAL MESSAGE PRECISION SYSTEM TIMER WIN-
DOW

(4) Command interpretation (HELP SIC Command)
Language\ PRIORITY SYNTAX

(5) Miscellaneous actions (HELP SIC Miscellaneous)
BEEP CPU DATE DEBUG DELAY FLUSH LOCK RANDOM_SEED USER UV WAIT

5.34.1 SIC FileSystem

SIC File System handling commands

SIC APPEND File FileAppended
SIC COPY FileOld FileNew
SIC DELETE File
SIC DIRECTORY Directory

5 SIC LANGUAGE INTERNAL HELP 83

SIC FIND FileFilter
SIC GREP String File
SIC MKDIR New_Directory
SIC MODIFIED FileName StrName
SIC PARSE Filename Name [Ext [Dir]]
SIC RENAME FileOld FileNew

5.34.2 SIC Procedure

SIC Procedure related operations

SIC EXPAND Infilename Outfilename
SIC EXTENSION MacroExtension
SIC MACRO [ProcedurePath]
SIC OUTPUT [File [NEW|APPEND]]
SIC SAVE FileNew Command
SIC VERIFY [ON|OFF|MACRO] [ON|OFF|STEP]
SIC WHICH Procedure

5.34.3 SIC Customize

SIC Customization commands

SIC EDIT [Editor[]]
SIC ERROR
SIC HELP [HelpMode]
SIC INTEGER [SHORT|LONG]
SIC LOGICAL [LogName [Translation]]
SIC MESSAGE [Code]
SIC PRECISION [Single|Double]
SIC SYSTEM
SIC TIMER [Value]
SIC WINDOW [On|Off]

5.34.4 SIC Command

Command interpretation rules

SIC Language\ [Status]
SIC PRIORITY [Level Language [...]]
SIC SYNTAX [Fixed|Free]

5.34.5 SIC Miscellaneous

SIC Miscellaneous operations and controls

5 SIC LANGUAGE INTERNAL HELP 84

SIC BEEP [N]
SIC CPU
SIC DATE
SIC DEBUG Item
SIC FLUSH
SIC LOCK LockFile
SIC RANDOM_SEED Value
SIC USER
SIC UV
SIC WAIT Seconds

5.34.6 SIC APPEND

[SIC\]SIC APPEND FirstFile FileAppended

Append file "FirstFile" to file "FileAppended". It is equivalent to Unix
command

cat FirstFile >> FileAppended
but system independent.

The error status on return is ruled by the switch SIC SYSTEM (see HELP
for details). The default is to raise an error if an error occurs during
the concatenation.

5.34.7 SIC BEEP

[SIC\]SIC BEEP [N]

Will beep 1 or N times.

5.34.8 SIC CPU

[SIC\]SIC CPU [VERBOSE]

Will return the User CPU and System CPU times in real variables USER and
SYSTEM resp. These variables are holded by two structures SIC%CPU%RAW%
and SIC%CPU%CUMUL% which record times since last and first calls of
SIC CPU resp. These structures also provide elapsed time in variables
ELAPSED.

If the extra argument VERBOSE is present, the CPU times are evaluated,
the Sic structures are filled (same as above), and additionally a summa-
ry is printed to the terminal.

5.34.9 SIC DATE

[SIC\]SIC DATE

5 SIC LANGUAGE INTERNAL HELP 85

Will return the current date and time in symbol SYS_DATE.

5.34.10 SIC DEBUG

[SIC\]SIC DEBUG LUN [Number]
[SIC\]SIC DEBUG IMAGE [Number]
[SIC\]SIC DEBUG MEMALIGN
[SIC\]SIC DEBUG MESSAGE
[SIC\]SIC DEBUG GFORTRAN
[SIC\]SIC DEBUG RESOURCES
[SIC\]SIC DEBUG PYTHON
[SIC\]SIC DEBUG VARIABLES
[SIC\]SIC DEBUG LOCALE [Value]
[SIC\]SIC DEBUG SYSTEM ON|OFF

Debugging command.

The first two keywords LUN and IMAGE print the status of reserved Logi-
cal UNit numbers (LUN), or of allocated image slots (IMAGE).

The MEMALIGN keyword will check if dynamically allocated buffers are
aligned on 4, 8, 16 and 32 bytes. Some applications (e.g. FFTW3) are
more or less faster dependending on the buffer alignment in memory.

The MESSAGE keyword swaps ON or OFF the debugging mode for messages.
When turning it ON, all messages to both screen and message files are
enabled. In this case it is a shortcut of the commands:

SIC MESSAGE GLOBAL ON
SIC MESSAGE GLOBAL A=FEWRIDTCU

When turning it OFF, standard message filters (maybe customized by user)
are re-enabled. It is a shortcut of the command:

SIC MESSAGE GLOBAL OFF
Default is debug mode turned OFF, unless a ’-d’ option has been provided
when invoking the Gildas executable.

The GFORTRAN keyword will check if the program is able to read and write
correctly Gildas binary files. Some versions of the Gfortran compiler
have an issue on this point, this command is intended to give a clear
status to the user.

The RESOURCES keyword will display current resource usage and limits
(memory, files, etc). See man pages for getrusage and getrlimit for de-
tails (Linux only).

The PYTHON keyword will display the Python version which was used to
compile Gildas against the one used at run time. If they are different,
this probably means troubles.

5 SIC LANGUAGE INTERNAL HELP 86

The VARIABLES keyword will display a technical list of the variables de-
fined in Sic.

The LOCALE keyword, with no more argument, will display the current
LC_ALL locale and some of its details. The current locale can be changed
with an extra argument. Take care that Gildas is English-speaking, e.g.
decimal point should be ".". If not, you are in trouble! It is wise to
use the standard default, i.e. the "C" locale.

The SYSTEM keyword enables (argument ON) or disables (argument OFF) a
debugging message displayed when a system() call is performed. system()
calls are convenient and flexible to execute shell commands, but under
Linux they need to fork a sub-process, duplicating temporarily the memo-
ry consumed by the current process. This may be a limiting factor on
many cases. Default is OFF, i.e. message are disabled.

5.34.11 SIC COPY

[SIC\]SIC COPY FileOld FileNew
[SIC\]SIC COPY File Directory

Copy FileOld to FileNew, or copy File to the named Directory. It is
equivalent to Unix command

cp FileOld FileNew
but system independent.

The error status on return is ruled by the switch SIC SYSTEM (see HELP
for details). The default is to raise an error if an error occurs during
the copy.

5.34.12 SIC DELAY

[SIC\]SIC DELAY Seconds
[SIC\]SIC DELAY

Delay the execution of commands. SIC DELAY is used in two times. The
first call is given a duration as argument. Added to the current date
and time, this defines a virtual milestone in the future. The next call
without argument will wait for this milestone if it has not been reached
yet, or will return without waiting if the limit is already past. During
the waiting time, CTRL-C can be used to exit the command.

An application of SIC DELAY is to slow down the execution of loops which
display or draw useful informations to the user. In the example below,
we ensure that the loops are executed every second (or more), instead of
depending on the CPU speed which varies over machines and epochs:

FOR I 1 to 10
SIC DELAY 1.0

5 SIC LANGUAGE INTERNAL HELP 87

Do something
SIC DELAY

NEXT

5.34.13 SIC DELETE

[SIC\]SIC DELETE File

Delete the specified file. It is equivalent to Unix command
rm File

but system independent.

5.34.14 SIC DIRECTORY

[SIC\]SIC DIRECTORY Directory

Change the working directory to the specified name. It is equivalent to
Unix command

cd Directory
but system independent.

5.34.15 SIC EDIT

[SIC\]SIC EDIT [ON|OFF|EditorName]

List or change the status of the command line editing mode, or the de-
fault text editor used by command EDIT.

5.34.16 SIC ERROR

[SIC\]SIC ERROR

List the current error recovery command, defined by command ON ERROR.

5.34.17 SIC EXPAND

[SIC\]SIC EXPAND InFileName OutFileName

Add the language name before each command of the macro file InFileName
and write the results into the new macro file OutFileName. This command
should be used in a program where the InFileName macro does not produce
any command name ambiguity. The resulting macro file will then be usable
in any program.

The symbols are not touched because some procedures may need to redefine
symbols on the fly.

Right now the SIC commands are not transformed because it would cause
trouble to the procedure structure if some commands like FOR, IF, etc...
would be changed.

5 SIC LANGUAGE INTERNAL HELP 88

5.34.18 SIC EXTENSION

[SIC\]SIC EXTENSION [Extension1 ... ExtensionN]

Without arguments, print the list of extensions used by commands @ and
EDIT, with precedence given from the left to the right. Defaults are
program dependent: for all Gildas softwares, it is the program name,
while many user created applications use the generic default extension
".pro".

With one or more arguments, add the input extension(s) at the beginning
of the list, i.e. with highest precedence. If extension was already
known, SIC EXTENSION also brings it back at the beginning.

5.34.19 SIC FIND

[SIC\]SIC FIND [FileFilter [Directory]]

Search for all files matching the specified FileFilter in the specified
Directory. Matching files are returned in a SIC structure named DIR%.
DIR%NFILE is the number of found files, and DIR%FILE[1:DIR%NFILE] a
character array containing the filenames.

The FileFilter can contain a directory name. In this case the returned
file names will include it. On the contrary, if the FileFilter does not
contain a directory name, and a "Directory" argument is specified, the
returned names will not contain the Directory name.

The default file filter is *.*

5.34.20 SIC FLUSH

[SIC\]SIC FLUSH

Flush message and log files buffers onto disk.

5.34.21 SIC GREP

[SIC\]SIC GREP String File

Parse line by line the named (ASCII) file and search if the string ap-
pears in each line. The number of matching lines is saved in the output
variable GREP%N. The matching lines themselves are saved in the array
GREP%LINES; this array is defined only if GREP%N is non-zero.

5.34.22 SIC HELP

[SIC\]SIC HELP [PAGE|SCROLL|HTML]

5 SIC LANGUAGE INTERNAL HELP 89

With no argument, print how the HELP command behaves. Otherwise, con-
trols whether it outputs the text page by page (PAGE), or continuously
(SCROLL).

- SIC HELP PAGE indicates the HELP command should display page per
page.

- SIC HELP SCROLL indicates the HELP command should display the the
help in continuuous scrolling mode.

- SIC HELP HTML indicates the HELP command should refer the HTML
version of the documentation and use the appropriate browser to dis-
play it.

5.34.23 SIC INTEGER

[SIC\]SIC INTEGER [SHORT|LONG]

Define the default SIC integer kind (i.e. used by DEFINE INTEGER). SHORT
refers to Fortran’s INTEGER*4 (with a limit value of 2**31-1) while LONG
refers to INTEGER*8 (with a limit value of 2**63-1). Default is SHORT.

Without argument, the command displays the current default SIC integer
kind.

5.34.24 SIC LANGUAGE

[SIC\]SIC Language\ [ON|OFF]

Place a language in the active scope, or removes it, or list its status.
Languages not in active scope are not searched for their commands, un-
less the language name is explicitly given.

5.34.25 SIC LOCK

[SIC\]SIC LOCK [LockFile]

With no argument, display the list of lock files owned by the current
program session. With a file name as argument, create this file as a
lock file. Attempting to create a lock file which already exists is a
fatal error. Lock files owned by the current program session are im-
plicitely deleted when exiting.

This command is intended to protect some user’s resources, e.g. invoking
it in a procedure ensures that this procedure can not be run twice in
the same or in another session.

5.34.26 SIC LOGICAL

[SIC\]SIC LOGICAL LogName Translation
[SIC\]SIC LOGICAL LogName

5 SIC LANGUAGE INTERNAL HELP 90

[SIC\]SIC LOGICAL [Pattern]

The first syntax sets or replaces a logical name.

SIC LOG LogName will give the translation of that precise logical name.

Finally, SIC LOG Pattern will search for all logical names matching the
pattern. A wilcard ’*’ means 0 or more characters. Without second argu-
ment the pattern ’*’ is used, i.e. it will list all the logical names.

5.34.27 SIC MACRO

[SIC\]SIC MACRO MacroPath

Change the search path for the procedures. Procedures executed by @ are
searched in a path specified by the special logical name MACRO#DIR: .
This command allows to list or change the content of MACRO#DIR: .

5.34.28 SIC MEMORY

[SIC\]SIC MEMORY [ON|OFF]

Enable or disable automatic insertion of successful commands into the
stack.

5.34.29 SIC MESSAGE

[SIC\]SIC MESSAGE
[SIC\]SIC MESSAGE Pack1 [[[S|L|A]-|=|+]F|E|W|R|I|D|T|C|U] [PackN...]
[SIC\]SIC MESSAGE Global [[[S|L|A]-|=|+]F|E|W|R|I|D|T|C|U] [ON|OFF]
[SIC\]SIC MESSAGE * [[[S|L|A]-|=|+]F|E|W|R|I|D|T|C|U] [PackN...]
[SIC\]SIC MESSAGE /COLOR [Args]

The command SIC MESSAGE allows to customize the general verbosity of all
the GILDAS commands, or to customize the color of the messages depending
on their kinds (see HELP SIC /COLOR for details).

Modify and display the messaging filters for one or more packages. Mes-
sages are usually printed on screen and into a message file in the
GAG_LOG: directory. Depending on its kind (from trace to fatal errors),
a message may be printed or not to one of these outputs. Messaging fil-
ters allow the user to fine tune the kinds of messages he wants to see.
Filters are either global (i.e. all the messages are filtered whathever
the package they belong to) or package-dependent (i.e. the messages are
filtered depending on the package they belong to).

The command SIC MESSAGE,
- without argument, outputs the messaging filters for all active pack-

ages;

5 SIC LANGUAGE INTERNAL HELP 91

- with one or more package name as arguments, displays the associated
filters, e.g. :

GREG> SIC MESSAGE SIC GLOBAL
sic on-screen active filter: FEWRI---U
sic to-mesfile active filter: FEWRIDTCU
global on-screen inactive filter: FE-------
global to-mesfile inactive filter: FEWRIDTCU

First column shows the package name, second column the output de-
vice, third column the filter status, last column the associated
filter;

- with a package name followed by a messaging rule (see below), up-
dates its the filter value and displays it. The filters of several
packages can be changed on the same command line, e.g. SIC MESSAGE
SIC S+D GREG L-W

The package name can additionally have two special values:
- * : all the package filters are modified according to a single input

rule;
- GLOBAL : set a global filter which can override all the package fil-

ters without loosing them. This global behavior is activated and de-
activated by the ON or OFF keyword.

A rule to change a filter is a single string composed of three parts,
from left to right:
- A, S and/or L as first argument to modify All, Screen, or Logfile

filters. This must be unique but is optional, default is Screen on-
ly.

- +, - or = as second argument to add to, remove from, or redefine
filter values. This operator must be unique, and it is optional: de-
fault is +.

- F, E, W, R, I, D, T, C and/or U as last argument(s) to modify the
filters on Fatal, Error, Warning, Result, Info, Debug, Trace, Com-
mand and Unknown messages. This argument is mandatory, and the let-
ters may be associated.

The message kinds are:
F)atal: Program will cleanly end now because a fatal error occured,

e.g. a required initialization of the program could not occur or an
error can not be safely recovered or the program is in an unstable
status and can not go on.

E)rror: Command or action could not be executed to its end. Such er-
rors can be recovered, and program can continue to run safely.
- It denotes an attempt to do something not allowed or not imple-
mented in the command.

- Command can not run to the end as it will not produce the expected
result.

W)arning: Command or action will go on executing without an error, but

5 SIC LANGUAGE INTERNAL HELP 92

- the user must be warned about a strange behavior;
- a result is produced, but user must be careful with its interpre-
tation.

R)esult: Information directly requested by the user. It concerns all
the results returned by active commands. This should be understand
as:
- "You asked for this, as a result, that happened"
- "This was created/changed accordingly to your request"
- "Here is what you asked for (some values,...) "

I)nfo: Additional information not directly expected by the user when
he runs the command. It gives secondary informations on current ac-
tions, or it concerns more or less the result and the processes to
obtain it, but it is not the result itself.

D)ebug: High level debugging, e.g. follow the steps of complex compu-
tation. By default, it will not be printed. User can activate it if
strange non-fatal behavior occurs.

T)race: Low-level debugging, e.g. track the program execution. By de-
fault, it will not be printed. User must use it wisely because it
may produce thousands of messages in a row (for example, in loops).
User can activate it in case of unforeseen fatal behavior.

C)ommand: Each command typed on the terminal is resolved and can
printed back to terminal and to logfile. This is equivalent to the
obsolescent SIC VERIFY ON behavior.

U)nknow: It is reserved for the migration from the old message facili-
ties to the new one, and to handle internal errors in messaging
process.

Simple examples:
SIC> SIC MESSAGE
sic on-screen active filter: FEWRI---U
sic to-mesfile active filter: FEWRIDTCU
SIC> SIC MESSAGE SIC GLOBAL
sic on-screen active filter: FEWRI---U
sic to-mesfile active filter: FEWRIDTCU
global on-screen inactive filter: FE-------
global to-mesfile inactive filter: FEWRIDTCU
SIC> SIC MESSAGE SIC S+D
sic on-screen active filter: FEWRID--U
sic to-mesfile active filter: FEWRIDTCU
SIC> SIC MESSAGE SIC L-DT
sic on-screen active filter: FEWRID--U
sic to-mesfile active filter: FEWRI--CU
SIC> SIC MESSAGE SIC A=FEWRI
sic on-screen active filter: FEWRI----
sic to-mesfile active filter: FEWRI----
SIC> SIC MESSAGE GLOBAL ON
Turning ON global filtering rules

5 SIC LANGUAGE INTERNAL HELP 93

SIC>

Q: I’ve lost all messages, SIC MESSAGE is silent, what happens?
A: Many message kinds are certainly disabled, in particular Results

printed to Screen. This is why SIC MESSAGE is also silent. Consider
typing SIC MESSAGE SIC S+R and you should see back messaging filters.

5.34.30 SIC /COLOR

[SIC\]SIC MESSAGE /COLOR
[SIC\]SIC MESSAGE /COLOR ON|OFF
[SIC\]SIC MESSAGE /COLOR [kind1=color1] [kind2=color2] ...

Customize the message colors in the terminal depending on the message
kind.

Without argument, show the current color (if relevant) of all the mes-
sage kinds, and the available colors.

With ON or OFF as argument, enable or disable the message coloring.

With one or more arguments of the form "kind=color", customize the color
of the given message kind. Type SIC MESSAGE /COLOR without argument to
know the various message kinds and available colors. Use color "NONE" to
revert to the default terminal color. For example, the default at start-
up is:
SIC> SIC MESSAGE /COLOR F=RED E=RED W=ORANGE

5.34.31 SIC MKDIR

[SIC\]SIC MKDIR New_Directory

Create a new directory. It is equivalent to Unix command
mkdir -p New_Directory

but system independent. No error is raised if the directory already ex-
ists.

5.34.32 SIC MODIFIED

[SIC\]SIC MODIFIED FileName StrName

Check if a "file" was modified since last call, and fill the Sic struc-
ture named "StrName" accordingly. The file can be a regular file or a
directory. If file is a symbolic link, evaluation is made on its target.
On first call, the structure is set up and the file is assumed modified.
On subsequent calls, file and calling dates are compared and modifica-
tion status is evaluated. In case of doubt (e.g. modification time un-
changed at the file system precision), a modification is assumed.

5 SIC LANGUAGE INTERNAL HELP 94

The output structure has the following (scalar) components:
- StrName%FILE: the file name (character string),
- StrName%MTIME: the file modification time (long integer, in

nanoseconds since 01-jan-1970),
- StrName%PTIME: last time a modification was proved (long integer, in

nanoseconds),
- StrName%MODIF: file was (or may have been) modified or not since

last call (logical)
The structure must be a user-defined, global, variable. If the structure
or its elements are missing, they will be created at first call.

5.34.33 SIC OUTPUT

[SIC\]SIC OUTPUT [?|FileName [NEW|APPEND]]

Redirect the output of the SIC\SAY command to the specified file.

If NEW is passed after the file name, the file name is suffixed (re-
named) with a ~ if it was existing and a new empty file is created. This
is the default if this keyword is omitted.

If APPEND is passed after the file name, the file is reopened for ap-
pending text at the end if it was existing before. Else, a new empty
file is created.

If ? is passed as file name, the command prints the current output name
(terminal or file name).

If no argument is present, any currently opened output file will be
closed, and the output of command SAY is re-directed to the terminal.

5.34.34 SIC PARALLEL

[SIC\]SIC PARALLEL [Nthread]

Check or set the number of threads for parallel executions. Nthread is
either an integer indicating the desired number of threads, or "*" to
use all the cores of the current machine.

The current and maximum number of threads are visible in variables
SIC%OPENMP%NTHREADS and SIC%OPENMP%MTHREADS respectively.

Only active when compiled with Open-MP mode.

5.34.35 SIC PARSE

SIC PARSE Filename Name [Ext [Dir]]

Parse an input filename, and return the short Name, and optionally the

5 SIC LANGUAGE INTERNAL HELP 95

Extension and Directory into pre-defined SIC character variables.

5.34.36 SIC PRECISION

[SIC\]SIC PRECISION [SINGLE|REAL|DOUBLE|AUTO]

Select the precision of all computations using SIC variables. Automatic
precision will use the highest precision present in an expression.

5.34.37 SIC PRIORITY

[SIC\]SIC PRIORITY [Level1 Lang1 ... [LevelI LangN ...]]

SIC PRIORITY redefines the languages precedence when an ambiguous com-
mand (same name in several languages) is encountered: the lower the
precedence level, the higher the priority. By default, they are all the
same (level is set to 1), i.e. there is no automatic ambiguity resolu-
tion.

The priority levels can be changed for one, some, or all languages. Lev-
elI is an integer, which must be followed by one or more languages:
> 0: the level value is used directly, the lower level the higher pri-

ority,
= 0: the level value is Automatic, i.e. the priority comes after the

languages with an explicit positive value and before the ones
with a negative value,

< 0: set the priority from the end of the list, e.g. -1 means that the
language must have the lowest priority.

Example:
Level Priority
+1 1
+2 2
+4 3
0 4

-2 5
-1 6

Note that the priority list is compressed if the values are discontin-
ued.

A call to SIC PRIORITY without arguments prints the current levels for
all languages.

5.34.38 SIC RANDOM SEED

[SIC\]SIC RANDOM_SEED [DATETIME|URANDOM|Value]

This command resets the Fortran random seed used to initialize the se-
quence of pseudorandom numbers returned by the functions RANDOM and

5 SIC LANGUAGE INTERNAL HELP 96

NOISE. Several arguments are allowed:
- DATETIME: compute a seed based on current date and time. This is

portable but not highly random, e.g. 2 processes running at the same
time can end with the same seed.

- URANDOM: use the operating system special file /dev/urandom as a
random number generator, if available. This is the best choice but
it is not fully portable.

- Value: the user can specify its own seed (integer value). Reusing
the same value will ensure the same sequence of pseudorandom numbers
later on, which can be useful depending on the context.

Note that this command affects the seed, i.e. the starting point of the
sequence of pseudo-random numbers. It does not affect the randomness of
those numbers (i.e. you can safely use the Value 1 if you want).

The default at startup is DATETIME, i.e. the sequence will always be
different from one session to another. This default can be overriden by
setting the Sic logical GILDAS_RANDOM_SEED to DATETIME, URANDOM, or an
integer value in the file $HOME/.gag.dico

Without argument, the command displays the current Fortran random seed
in use. For debugging purpose.

5.34.39 SIC RENAME

[SIC\]SIC RENAME FileOld FileNew

Rename an existing file. It is equivalent to Unix command
mv FileOld FileNew

but system independent.

5.34.40 SIC SAVE

[SIC\]SIC SAVE [FileName Symbol]

This is a specific command (currently) used by the ALMA simulator to
copy into an output file (a procedure) the name of any newly defined SIC
variable, prefixed by whatever Symbol is given here.

Without argument, just closes the current "save" file.

Can be used whenever you need to apply different actions to the same set
of variables, or get two sets of variables with similar names (one pre-
fixed, the other not) e.g. to store default values or last values. Re-
defining the Symbol and executing the created procedure will do the de-
sired job on the list of variables defined when SIC SAVE was active...

sic save define_all TOTO

5 SIC LANGUAGE INTERNAL HELP 97

define a Bunch Of Variables Here /global ! Only global stuff, though...
sic save
!
symbol TOTO "EXA &1 " ! Examine the Variable name
@ gag_proc:define_all ! for all variables in this list...
!
sic output init_all.sic
symbol TOTO "@ sicvar_init" ! Look into gag_pro:clone_var.sic
@ gag_proc:define_all ! for further explanation
sic output
@ init_all.sic ! Initialize them
!
define structure CLONE% /global
sic output clone_all.sic
symbol TOTO "@ sicvar_clone CLONE% " ! Will actually create a
@ gag_proc:define_all ! copy of all variables into structure CLON
sic output
symbol TOTO continue
@ clone_all.sic ! Duplicate them into CLONE% structure

5.34.41 SIC SEARCH

[SIC\]SIC SEARCH FileName

(Obsolescent).
Search for the specified file, and set the logical SIC%EXIST to YES if
the file exists, NO if not.

This is an obsolescent feature. The same functionality is available
through the logical function FILE("FileName").

5.34.42 SIC SYNTAX

SYNTAX of SIC commands
and

[SIC\]SIC SYNTAX [FIXED|FREE]

The SIC syntax is the following :
[LANG\]COMM [Arg1 [Arg2 [...]]] [/OPT1 [p1 [...]] [/OPT2 [...]]

where [] indicates optional fields.

Language, command and options can be abbreviated. The language field
(LANG\) is optional but may help resolve ambiguities.

First, the line is stripped of duplicate separators (spaces or tabs).
Character strings (entities included between double quotes) are not af-
fected by this formatting.

5 SIC LANGUAGE INTERNAL HELP 98

Then symbols (entities included between simple quotes, plus the lan-
guage-command field) and tokens (macros parameters 1 2 etc...) are
translated, even within character strings.

Finally, the line is analysed for ambiguities and the language, command
and option names are expanded. An option is a word beginning by a slash
(e.g. /OPT1 is an option in the above example).

All arguments can be character or mathematical variables or expressions,
depending on the type required by the program. Character expressions can
be concatenated with implicit formatting of variables and mathematical
expressions, such as in

"The real number PI is equal to "’ACOS(-1.0)’
Variable and expressions are not evaluated during the parsing, but only
during the execution. Character variables must be included between
quotes for translation, e.g.

DEFINE CHARACTER C*6
LET C 3.14159
DEFINE REAL A
LET A ’C’/PI
EXAMINE A

A = 0.9999705

[SIC\]SIC SYNTAX [FIXED|FREE]

controls the syntax for mathematic operations. In FIXED syntax, the LET
command is compulsory. In FREE syntax, commands lines like

A[I,J] = SIN((2*I+J)/PI)
where A is a known variable, are recognized as assignement and automati-
cally expanded to the equivalent FIXED syntax

LET A[I,J] SIN((2*I+J)/PI)
Free syntax cannot be used for the LET /WHERE command.

5.34.43 SIC SYSTEM

[SIC\]SIC SYSTEM [ERROR|NOERROR]

Indicate if the commands SIC\SYSTEM, SIC\SIC COPY, and SIC\SIC APPEND
can raise errors or not, i.e. if any error occuring when executing the
string command (SIC\SYSTEM), or occuring when copying/appending a file
should stop the Sic execution flow. Default is true. The current status
is also available in the logical variable SIC%SYSTEMERROR.

5.34.44 SIC TIMER

[SIC\]SIC TIMER [Time [HOURS|MINUTES|SECONDS]]

5 SIC LANGUAGE INTERNAL HELP 99

All Gildas programs are automatically closed (normal exit) after a de-
fined period of inactivity at the prompt level. This period is defined
by the Sic timer.

With a Time argument, set the timer to the input value. Unit is a key-
word which can be Hours, Minutes, or Seconds (default Hours). A null or
negative value disables the timer.

Without argument, display the current value of the timer.

The timer can be customized in a Sic logical named SIC_TIMER (integer
value, in hour unit). This value is evaluated once at startup from one
of the Sic logical dictionaries. Later changes are ignored. Default is 3
hours.

5.34.45 SIC USER

[SIC\]SIC USER

THIS COMMAND IS OBSOLESCENT. Use instead variables SIC%USER and SIC%HOST
defined at startup.

SIC USER will return the user name (usually with host name) in symbol
SYS_INFO.

5.34.46 SIC UVT VERSION

[SIC\]SIC UVT_VERSION Version

[EXPERIMENTAL -- Reserved for developpers so far]

Select the UV Table version being used by SIC. The Version can be FRE-
QUENCY, DOPPLER or SYSTEM. It affects the way the spectral axis is in-
terpreted to define spectral and spatial resolution.

FREQUENCY is the "old" historical behaviour, which is only suitable for
small field of views and number of channels.

DOPPPLER is suitable for large number of channels, but may be limited to
small field of views in case of data spanning several observation dates

SYSTEM is more accurate, but requires an extra column in the UV Tables
to hold time dependent Doppler tracking.

5.34.47 SIC VERIFY

[SIC\]SIC VERIFY
[SIC\]SIC VERIFY ON|OFF

5 SIC LANGUAGE INTERNAL HELP 100

[SIC\]SIC VERIFY MACRO ON|OFF|STEP

Control the listing of macros, loop or stack during execution. Without
argument, SIC VERIFY shows its current status.

SIC VERIFY ON enables echoing each command in the terminal before execu-
tion. This is mostly useful for debugging. Note that numerous outputs in
the terminal slow down considerably the procedure execution. Default is
OFF.

SIC VERIFY MACRO ON adds feedback in the terminal when entering and
leaving a procedure (procedure file name, number of arguments, argu-
ments). It also waits for the user to type <Return> before starting the
procedure execution. SIC VERIFY MACRO STEP adds feedback in the terminal
before executing each command (similar to SIC VERIFY ON), but it also
waits for the user to type <Return> before executing the command. De-
fault is OFF, i.e. no feedback is shown, and no need to type <Return>.

5.34.48 SIC VERSION

[SIC\]SIC VERSION

Return the version number and credits or copyrights for the languages or
subprograms currently used.

5.34.49 SIC WAIT

[SIC\]SIC WAIT Seconds

Will wait for the required number of seconds. Fraction of seconds can be
specified.

5.34.50 SIC WHICH

[SIC\]SIC WHICH Procedure

Return the full path of the procedure or macro which will be executed by
"@ Procedure" or "TYPE Procedure" calls.

See HELP @ for details on which directories procedures and macros are
searched in.

5.34.51 SIC WINDOW

[SIC\]SIC WINDOW [ON|OFF]

Allow or disallow use of GUI mode.

5 SIC LANGUAGE INTERNAL HELP 101

5.35 SORT

[SIC\]SORT KeyVar [Var1 [... VarN]]

Sort an ensemble of 1-D or 2-D SIC variables by increasing values of the
(1-D only) KeyVar variable. A standard use is to sort a complete GILDAS
table, using
DEFINE TABLE A MyFile WRITE
SORT A[3] A
DELETE /VAR A

As shown in the example, the command handles the case where KeyVar is a
subset of any of the variables to be sorted. However, if there is alias-
ing between any of the Var1 ... VarN variables, the result is unpre-
dictable.

The command can be useful for further use of the COMPUTE LOCATION com-
mand, or plots using GreG. To mimic the behaviour of the (obsolete)
GREG\SORT command, use

SIC\SORT Key Var2 Var3
where Key is any of X Y Z, and Var2 and Var3 the two other ones.

5.36 SYMBOL

[SIC\]SYMBOL [X ["Translation"]] [/INQUIRE "Prompt Text"]

This commands defines, lists and deletes symbols.

SYMBOL
Lists the Symbol table

SYMBOL X
Gives the translation of the symbol X

SYMBOL X "Translation"
Defines a new symbol or update the precedent symbol definition.

SYMBOL X /INQUIRE "Prompt Text"
Inquires the definition of a symbol with the specified prompt (for

interactive session only).

A symbol is an abbreviation of any character string. The symbol transla-
tions are substituted to the corresponding symbols when found in a com-
mand line. In a command line, symbol TOTO must appear inside simple
quotes (like ’TOTO’) to be translated, except for the line beginning
where SIC assumes the first word might be a symbol. A symbol definition
may refer to another already defined symbol. The substitution occurs ev-
erywhere, even within the character strings.

5 SIC LANGUAGE INTERNAL HELP 102

Symbols in FOR-NEXT loops are substituted at compilation time (i.e. when
the command line is written but not yet executed), using their current
value. In a loop, redefining a symbol which is already defined out of
the loop has no effect since its occurences are substituted before the
execution of all the commands.

Symbols can be deleted when they are no longer usefull, using command
DELETE /SYMBOL.

5.37 SYSTEM

[SIC\]SYSTEM ["Command"]
$ Command

Execute a command from the operating system, or create a subshell. If no
argument is given, start a subshell by running the default user shell.
The subshell can be terminated by typing ’exit’ or ’bye’ or ’logout’,
depending on system version, and controls return to SIC in this case.

If an argument is given, executes the command in a subshell. It must be
a single argument: use double-quotes to enclose multiple arguments sepa-
rated by blanks.

Note that Unix environment variables cannot be defined in such a way,
since it is a subshell. In particular, use command SIC DIRECTORY to
change your working directory.

$ Command:
At the interactive prompt, system commands can also be executed directly
from the SIC level using the $ token. "Command" must be a valid operat-
ing system command in the default shell of the user. The $ token is in-
valid in procedures.

5.38 TIMER

[SIC\]TIMER
[SIC\]TIMER ON|OFF
[SIC\]TIMER [Time [Unit]] [/COMMAND String]

All Gildas programs are automatically closed (normal exit) after a de-
fined period of inactivity at the prompt level. This period is defined
by the Sic timer. The timer starts as soon as the program prompt is
available (i.e. inactivity). The timer is stopped when a command starts
running. It restarts from the beginning when the prompt is back.

Without argument, display the timer status.

With the keyword ON or OFF as argument, enable or disable the timer. The

5 SIC LANGUAGE INTERNAL HELP 103

timer is enabled by default.

With a Time argument, set the timer to the input value. Unit is a key-
word which can be HOURS, MINUTES, or SECONDS (default HOURS). Default
value at startup is 3 hours.

The command executed once the timer is done can be customized with the
option /COMMAND. The command string must be a single argument, possibly
double-quoted if blanks are needed, e.g.
SIC> TIMER /COMMAND EXIT
SIC> TIMER /COMMAND "EXAMINE PI"
SIC> TIMER /COMMAND "SAY ""Hello from timer"""

Default command at startup is EXIT.

The timer duration can be customized in a Sic logical named SIC_TIMER
(integer value, in hour unit). This value is evaluated once at startup
from one of the Sic logical dictionaries. Later changes are ignored. De-
fault is 3 hours.

5.39 TYPE

[SIC\]TYPE [Macro_Name] [/OUTPUT OutFile]

TYPE lists the commands of the named macro. The same search rules as for
command SIC\@ apply (see HELP @). The command SIC WHICH can be used if
you have doubts on the TYPE’d macro.

If no argument is given, the Stack is listed.

The output of the command can be redirected to a file instead of the
standard output (STDOUT) thanks to the option /OUTPUT.

5.40 @

[SIC\]@ Macro_Name [Arg1 [Arg2 [...]]]

Read commands from macro (or procedure) Macro_Name and execute them.

Default file extension is program dependent (usually the program name,
or .pro), and can be changed using command SIC EXTENSION. Procedures are
searched for according to the following rules:
- first in the directory designated by the logical name GAG_PROC:
- then, in order, in all the directories in the path specified by the

logical name MACRO#DIR: (see command SIC MACRO).
One can use the command SIC WHICH to be sure of the macro which will be
executed.

All commands will be echoed to the terminal when executed if the VERIFY

6 GUI LANGUAGE INTERNAL HELP 104

switch is ON (see command SIC VERIFY).

Macros (as any other text files) can be edited using a standard text ed-
itor by typing command EDIT with the macro file name as argument (see
EDIT and SIC EDIT).

5.40.1 @ ARGUMENTS

[SIC\]@ Macro_Name [Arg1 [Arg2 [...]]]

The arguments passed to the macro are described by the structure PRO%:
- PRO%NAME: calling procedure name,
- PRO%NARG: number of arguments passed,
- PRO%ARG: a character array (size PRO%NARG) providing all the
arguments. This array is not defined if PRO%NARG is 0.

The structure is updated when entering each macro. Up to 32 parameters
can be given.

Note that the arguments are all saved as character strings. A typical
use is:

SIC> LET MYVAR ’PRO%ARG[1]’
to substitute the character string by its content. See also HELP PARSE
for advanced argument parsing.

The old-fashion way to access the arguments is to use the tokens &1, &2,
..., &9. They are substituted to the corresponding arguments as they are
found in the body of the procedure, even within character strings. For
example

SIC> say "a&1b"
will display the first argument value surrounded by "a" and "b". Note
that these tokens can be used to access the 9 first arguments only.

6 GUI Language Internal Help

6.1 Language

GUI\ Command Language Summary

BUTTON : Associate a command with a button
END : Read parameters from window and set variables accordingly
GO : Activate the currently defined window
MENU : Create a pulldown menu for next buttons
SUBMENU: Create a submenu in the current menu
PANEL : Define or delete an input window or menubar
WAIT : Wait for GO button in the current window
URI : Open any kind of URI, e.g. html link or file name.

6 GUI LANGUAGE INTERNAL HELP 105

6.2 BUTTON

GUI\BUTTON "Command" Button ["Title" HelpFile [OptionTitle]]
(Graphic-User-Interface mode only)

Creates a button widget to execute the specified "Command".

If no "Title" is given, the button will have no associated variables,
and will appear with other similar buttons at the top of the window.

If a "Title" argument is present, a "secondary parameters" window is
created. In the main window, the "title" appears followed by 3 buttons:
one with the button name, one pointing to the secondary parameters win-
dow, and a "HELP" button. All subsequent LET commands will create wid-
gets in this secondary window, until a new GUI\BUTTON command is typed.
"HelpFile" specifies a text file where the help for the variables can be
found, and "OptionTitle" is a title for the secondary window (and asso-
ciated button).

6.3 END

GUI\END

Reads all parameters from the current window(s) and set the modified
variables accordingly. Normally reserved for programming applications.

6.4 GO

GUI\GO ["Command"]

Map the windows defined by the previous GUI\PANEL command and its asso-
ciated GUI\BUTTON and LET commands. "Command" is an optional command to
be executed when button "GO" is pressed.

6.5 MENU

GUI\MENU "Title" [/CLOSE] [/CHOICES]

Creates a pulldown menu to group a set of buttons without associated pa-
rameters. Subsequent GUI\BUTTON or GUI\URI commands will add buttons in
the pulldown menu.

When option /CLOSE is present, closes the current pulldown menu. Subse-
quent GUI\BUTTON or GUI\URI commands will create buttons on the main
menubar.

This command is valid only when creating a detached menubar, i.e. after
a GUI\PANEL/DETACH command has been typed.

6 GUI LANGUAGE INTERNAL HELP 106

6.6 SUBMENU

GUI\SUBMENU "Title" [/CLOSE]

Create a new submenu in the current menu. Subsequent GUI\BUTTON or
GUI\URI commands will add buttons in this submenu.

When option /CLOSE is invoked, closes the current submenu. Subsequent
GUI\BUTTON or GUI\URI commands will create buttons in the parent menu.

6.7 PANEL

GUI\PANEL "Title" HelpFile [/DETACH] [/LOG LogFile]
GUI\PANEL [HelpFile] /CLOSE

Activate the Graphic-User-Interface input mode for variables. A window
with the specified title is created, but not mapped to the screen. Suc-
cessive LET commands will create widgets in this window to allow to mod-
ify variables by entering values in the widgets. Command GUI\GO "Com-
mand" will map the window to the screen. Once the proper input has been
defined, clicking on the "GO" button will setup all the related vari-
ables in the main program, and execute the associated command. Clicking
on button "UPDATE" will only set the variables. Clicking on button
"ABORT" will return without modifying the variables.

Help is available in the window through the "HELP" button, but also
clicking in any prompt area.

See LET command for details.

If option /DETACH is present, a menubar is created instead of a normal
window. Several buttons can be attached to this menubar using the
GUI\BUTTON and GUI\MENU commands, but no variables can be set in this
mode. The menubar is mapped when command GUI\GO is typed.

If option /CLOSE is present, the last detached menubar, or the specified
one, is deleted.

/LOG option stores variable definitions in specified log file.

6.8 WAIT

GUI\WAIT

Wait for button "GO" "UPDATE" or "ABORT" to be pressed. The command mon-
itor stays in hold state until one of these buttons in the main window
are pressed.

7 VECTOR LANGUAGE INTERNAL HELP 107

6.9 URI

GUI\URI

Open any kind of URI (Uniform Resource Identifier), e.g. html link or
file names, for example:
GUI\URI "http://www.iram.fr/IRAMFR/GILDAS/" "GILDAS Web Page"
GUI\URI gag_doc:pdf/gildas-intro.pdf "GILDAS Introduction"

The choice of the software used to open the URI is let as much as possi-
ble to the system (which should itself honor the user’s preferences).

7 VECTOR Language Internal Help

7.1 Language

VECTOR\ Language Summary

FITS : Convert between FITS files and Gildas images
HEADER : List the header of a Gildas image
RUN Task : Activate a GILDAS task
SPY [Task] : Look at current status of detached Tasks
SUBMIT Task : Submit a GILDAS Task in batch queue GILDAS_BATCH
TRANSPOSE : Transpose data cubes or SIC Variables

7.2 FITS

[VECTOR\]FITS FitsFile
[VECTOR\]FITS FitsFile TO GildasFile [/STYLE Style] [/HDU Number]

[/BLC Position...] [/TRC Position...] [/OVERWRITE]
[VECTOR\]FITS FitsFile FROM GildasFile [/STYLE Style] [/BITS Nbit]

[/OVERWRITE]

With a single FITS file name as argument, give a summary of all HDUs
found in the file. With more arguments and options, convert between FITS
files and Gildas images or tables.

With the option /OVERWRITE, the command will silently overwrite the out-
put file if it already exists.

7.2.1 FITS FROM

[VECTOR\]FITS OutputFile.fits FROM InputFile.gdf [/STYLE Style]
[/BITS Nbit]

Create a FITS file from a Gildas image or table. The layout of the FITS
file depends on the specified "Style", although default styles will be
used depending on the Gildas image (e.g. UVFITS is used for UV Tables,
STANDARD is used for images).

7 VECTOR LANGUAGE INTERNAL HELP 108

The number of bits is controlled by "Nbit". It defaults to -32 for im-
ages, and +16 for UV data. See subtopic for details.

Note that, in order to conform Calabretta & Greisen 2002 formalism and
recommendations (which define the FITS description of the spatial pro-
jections of the celestial sphere), radio-projected maps are exported to
FITS under the Sanson-Flamsteed (SFL) description, by properly redefin-
ing the reference point on the Equator with no need for reprojection of
the data itself.

Options /BLC and /TRC are not available in this direction.

7.2.2 FITS TO

[VECTOR\]FITS InputFile.fits TO GildasFile.gdf [/STYLE Style] [/HDU
Number] [/BLC Min1 ... MinN] [/TRC Max1 ... MaxN]

Convert the InputFile.fits FITS file into a Gildas image in Gildas-
File.gdf, using the appropriate "Style". A specific HDU can be specified
instead of the Primary FITS header (default is 1, i.e. Primary).

A subset of the input file data can be extracted by specifying the bot-
tom left corner (/BLC) and the top right corner (/TRC) coordinates. For
example
FITS ... /BLC 10 100 /TRC 20 200

will extract the range [10:20] in the first dimension, and [100:200] in
the second dimension. Dimensions omitted default to 0, which stands for
the largest possible corner position in the corresponding direction.

7.2.3 FITS /BITS

[VECTOR\]FITS OutputFile.fits FROM InputFile.gdf /BITS Nbit

The number of bits offers two controls: the data size and the encoding
scheme. This value will be found in the resulting header under the card
BITPIX.

Encoding scheme:
It is controled by the Nbit sign.
Positive sign means indexed encoding: the values are scaled as inte-
gers distributed among the 2**abs(Nbit) values. The forward and
back-conversion from actual values to indexed values are based on
the data extrema. Beware they must be up-to-date in the GDF header
before converting a BITPIX>0 FITS (see command V\HEADER /EXTREMA)!
Blank values are identified as the last integer of the indexed
scale.
Negative sign means the actual values are saved "as is" (IEEE float-

7 VECTOR LANGUAGE INTERNAL HELP 109

ing point format). Blank values are saved as IEEE NaN.
Data size:

It is controled by the Nbit absolute value: 16, 32, or 64 will con-
sume respectively 2, 4 and 8 bytes per value, with a direct impact
of the file size.

Nbits=+16 is worth only if the data dynamic (range of values) is low,
otherwise value precision loss will happen (2**16 values are not enough
to cover properly a large range of values). In the other cases, Nbit<0
is more modern and should be prefered. The command supports Nbits +16,
+32, -32, -64.

7.2.4 FITS /STYLE

[VECTOR\]FITS ... /STYLE Name

From FITS to GILDAS, the command automatically chooses between an IMAGE
FITS (STANDARD style) and a UVFITS (UVFITS style). /STYLE option can be
used to customize the UVFITS import:

STANDARD
for IMAGE FITS (images, cubes,...),

UVFITS
for UV FITS,

CASA_UVFITS
same as UVFITS, but keep all Stokes parameters if relevant.

From GILDAS to FITS, support styles are:
STANDARD

automatic choice between an IMAGE FITS (image, cube,...) and
regular UVFITS for UV data,

UVFITS
default for UV data,

CASA_UVFITS
same as AIPSFITS,

AIPSFITS
enables writing the antenna table extension, a 7th "IF" axis,
and proper velocity description,

SORTED_AIPSFITS: same as AIPSFITS, with time-sorting of the visibil-
ities enabled.

7.3 HEADER

[VECTOR\]HEADER GildasFile|FITSFile|HeaderVariable [/EXTREMA]
[/TELESCOPE Args]

Interact with file headers or header variables. Some actions are possi-
ble or not depending on the header kind or properties.

7 VECTOR LANGUAGE INTERNAL HELP 110

If no option is present, display the named header.

The /EXTREMA option computes (or recomputes) and updates the extrema
section in the header.

The /TELESCOPE option creates or updates the telescope section. See
subtopic for details.

7.3.1 HEADER /TELESCOPE

[VECTOR\]HEADER GildasFile|HeaderVariable /TELESCOPE [+-]Tel1

This option adds (leading +) or removes (leading -) one or more tele-
scope from the telescope section. If the + or - character is omitted, +
is assumed.

For example:
SIC> HEADER myfile.gdf /TELESCOPE 30M

adds the 30M to the telescope section.
SIC> HEADER myfile.gdf /TELESCOPE -ALMA +ACA

removes the ALMA telescope and adds ACA.

It is not an error to add a telescope already present, and it is not an
error to remove a telescope already absent.

7.4 RUN

[VECTOR\]RUN TaskName [Parameter_File] [/EDIT] [/NOWINDOW] [/WINDOW]

Execute a GILDAS task as a detached process.

See also:
HELP TASK for a summary of all available tasks.
HELP TASK GroupName for a summary of tasks in a group.
HELP RUN TaskName for details on a specific task.

Input file (*.init):
The input parameters are read from the file Parameter_File. It is a
SIC procedure with commands from the TASK\ language. The default name
of the parameter file is TaskName.init in the current working directo-
ry. If it does not exists yet, a template duplicated from the
GAG_TASK: location is used. If this template file does not exist, it
may be that the Task you want to run does not exist either, or is not
yet debugged at all.

There are 3 ways to set up the input file:
- Window mode: if the variable RUN_WINDOW is YES (default on X-Window

systems), or if the option /WINDOW is specified, a panel appears

7 VECTOR LANGUAGE INTERNAL HELP 111

to enter all parameters. Help if available by clicking on the
prompt string for each parameter, or on the HELP button. Once
all parameters have been adequately specified, the task can be
activated by clicking OK, or aborted by clicking ABORT.

- Editor mode: if the option /EDIT is specified, your favorite text
editor (see SIC EDIT) is invoked to edit the parameter file.

- No window mode: if the variable RUN_WINDOW is NO, or if the option
/NOWINDOW is specified, you won’t be asked to edit the parameter
file. This is useful for non-interactive data processing. This
assumes you have created the parameter file previously, e.g. "by
hand" or from a previous call.

Once the parameter file has been prepared in Edit-mode or Window-mode,
the RUN command will prompt you for all missing parameters in the
.init file.

Parameter file (*.par):
A temporary parameter file derived from the init file is created by
the RUN command in the GAG_SCRATCH: directory. It may be deleted after
Task execution. See also HELP SPY.
At this stage a second SIC procedure is executed before task submis-
sion to check the validity of input parameters. If any parameter is
invalid, an error is returned and the Task not submitted.

Log file:
The output messages of the task are logged in the file
GAG_LOG:TaskName.gildas. The Sic variable SIC%TEE controls wheter the
messages should be printed in real time (YES) or after the task execu-
tion (NO). Default is NO. Beware the ’tee’ program does not always
propagate task execution errors (this behavior is system-dependent),
which means the command flow may continue even if a task fails, re-
sulting in later troubles.

Task location:
If no directory is specified in the task name, the task is assumed to
be in the GILDAS_LOCAL: (if defined). Else it is searched in TASK#DIR:
default locations.

Asynchronous execution:
The task execution may be synchronous (the main program waiting for
task completion) or asynchronous (control returns to the main program
immediately). Note that an error status issued by the task does not
stop the main program in the case of asynchronous execution. If the
task terminates before you exit from the activating program, a termi-
nation message will be typed on the terminal, giving the termination
status.

7 VECTOR LANGUAGE INTERNAL HELP 112

Remote execution:
Task may execute on a remote node rather than on the local machine.
The node name is controlled by logical name GILDAS_NODE. If
GILDAS_NODE = LOCAL, local execution is performed. If not, GILDAS_NODE
must be the node name of the computer on which execution will be per-
formed. No synchronisation is offered for remote execution.

7.5 SPY

[VECTOR\]SPY [Task_Name]

Displays the status of all active GILDAS tasks, or lists the last output
from the specified task.

7.6 SUBMIT

[VECTOR\]SUBMIT Task_Name [Parameter_File] [/EDIT] [/NOWINDOW]
[/WINDOW]

The SUBMIT command is similar to the RUN command, except that the Task
is submitted to a batch queue (named GILDAS_BATCH) instead of being exe-
cuted as a detached process. See RUN command for details.

7.7 TRANSPOSE

[VECTOR\]TRANSPOSE Input Output Order

Perform tranposition of disk data files (GDF or FITS) or SIC variables.

Disk data files:

GDF or FITS files storing tables or N-dimensional cubes are trans-
posed to GDF files according to the transposition order specified by
Order (21, 312, 213, etc...). For example:

VECTOR\TRANSPOSE TEST.VLM TEST.LMV 231
The transposition takes place in RAM memory if the sic logical
SPACE_GILDAS (in MegaBytes unit) is big enough, else it takes place
on disk with more computation and disk access costs.

SIC variables:

For example
DEFINE REAL A[10,2] B[2,10]
VECTOR\TRANSPOSE A B 21

will transpose the A SIC variable to the B SIC variable. SIC vari-
ables must be of the same type. If A and B are IMAGE variables, the
header is also transposed accordingly.

8 TASK LANGUAGE INTERNAL HELP 113

8 TASK Language Internal Help

8.1 Language

TASK\ Command Language Summary

Define and specify the input parameters of tasks. Only available in a
Library mode, not to be used interactively.

CHARACTER : Define a character string parameter
FILE : Define a filename
GO : Activate the task
HELP : Show the help
INTEGER : Define an integer parameter
LOGICAL : Define a logical parameter
MORE : Show a separator in a widget
REAL : Define a real parameter
VALUES : Define a real parameter through a variable length expression
WRITE : Write parameter value to task parameter file.

8.2 CHARACTER

TASK\CHARACTER "Prompt text" Name = [Value] [/CHOICE List]

Define the parameter Name of Character type (C*256), and assign it a
value if specified. Otherwise, prompt with the text for a value.

A list of predefined values can be provided with the option /CHOICE. If
a wildcard (*) is present in the list, a custom value can also be set by
the user.

8.3 FILE

TASK\FILE "Prompt text" Name = [Filename] [/OLD] [/NEW]

Define the parameter Name of Character type, and assign it a filename.
Otherwise, prompt with the text for a content. In Windows mode, launch
a file browser to get the filename.

NOT IMPLEMENTED: if option /OLD (resp. /NEW) is present, the file must
(resp. must not) already exist.

8.4 GO

TASK\GO

In a .init file, activate the Widget if in Windows mode, or finish pa-
rameter entry and activate the task checker.

8 TASK LANGUAGE INTERNAL HELP 114

In a .check file, launch the Task.
.\"==

8.5 INTEGER

TASK\INTEGER "Prompt text" Name[Ndim] = [Value .. Value_Ndim]
[/RANGE]
[/INDEX String1 ... StringN [*]] [/CHOICE Value1 ... ValueN [*]]

Define the parameter Name of Integer type and dimension Ndim (or scale),
and assign it a value if specified. Otherwise, prompt with the text for
value(s). Both I*4 and I*8 parameters are supported by this command.

The /RANGE option restrict the valid range for the values. In Windows
mode, it activates a slider.

A list of character strings can be provided with the option /INDEX. This
/INDEX option means to return the rank of the given string among the
available choices. A * as the last choice means any other value is also
valid.

A list of predefined values can be provided with the option /CHOICE. If
a wildcard (*) is present in the list, a custom value can also be set by
the user.

8.6 LOGICAL

TASK\LOGICAL "Prompt text" Name = [YES|NO]

Define the parameter Name of Logical type, and assign it a value if
specified. Otherwise, prompt with the text for a content.

8.7 MORE

TASK\MORE

8.8 REAL

TASK\REAL "Prompt text" Name[Ndim] = [Value .. Value_Ndim] [/RANGE]
[/SEXAGESIMAL] [/CHOICE Value1 ... ValueN [*]]

Define the parameter Name of Real type and dimension Ndim, and assign it
a value if specified. Otherwise, prompt with the text for value(s). Both
R*4 and R*8 parameters are supported by this command.

The /RANGE option restrict the valid range for the values. In Windows
mode, it activates a slider.

9 ADJUST LANGUAGE INTERNAL HELP 115

If option /SEXAGESIMAL is present, a sexagesimal string can be provided:
it will be converted to a floating point value.

A list of predefined values can be provided with the option /CHOICE. If
a wildcard (*) is present in the list, a custom value can also be set by
the user.

8.9 VALUES

TASK\VALUES "Prompt text" Name = [Value1 ... ValueN]

Define the parameter Name of Character type, and assign it a string
holding all values specified as further arguments. Values can be math
expression and will be converted to numerics before assignment. This
command allows to specify variable dimension numeric arrays as task pa-
rameters.

8.10 WRITE

TASK\WRITE Name

This command is only valid in a .check file. It writes the parameter
Name on one line in the .par file, followed by its content in the next
lines.

9 ADJUST Language Internal Help

9.1 Language

ADJUST\ Language Summary

ADJUST : Allows fitting arbitrary data with up to 26 parameters.
EMCEE : Compute an EMCEE Markov Chain
ESHOW : Show results from an EMCEE Markov Chain

9.2 ADJUST

[ADJUST\]ADJUST My_Data "My Command" [/START G1 G2 ... Gn] [/STEP S1
S2 .. Sn] [/EPSILON e] [/WEIGHTS w] [/METHOD Powell|Robust|Sim-
plex|Slatec|Anneal] [/ITER Niter] [/QUIET] [/ROOT_NAME Name] /PARAMETERS
V1 V2 ... Vn [/BOUNDS Va Lowa Higha [Vb Lowb Highb ...]]

Allows fitting arbitrary data with (almost) arbitrary number of parame-
ters (well, less than 26 so far, I believe).

The command ADJUST defines the following global SIC variables to hold
its results:

Root%PAR : Fit parameters

9 ADJUST LANGUAGE INTERNAL HELP 116

Root%ERRORS : The parameter errors, if they have been computed
Root%RES : Residuals (i.e. My_Data-Root%FIT)
Root%STATUS : .FALSE. on successful completion.

where Root is the name given in the /ROOT_NAME option (default is ADJ or
MFIT).

My_Data is a SIC variable containing your data to be fitted. It can be a
variable of any rank, but (currently) it must be of type DOUBLE.

"My Command" is a character string specifying the command to be executed
to compute the difference between My_Data and the model. This differ-
ence must be returned in SIC variable Root%RES. The command is typically

"@ my_difference"
where "my_difference" is a procedure containing the code to compute the
model and a line to compute Root%RES. Here is a simple example to fit a
Gaussian (see HELP ADJUST EXAMPLE for more details)
!
begin procedure my_difference

let ADJ%res my_data-gauss(xx,amp,pos,width)
end procedure my_difference

9.2.1 ADJUST Example

Here is a complete procedure to generate a noisy Gaussian and fit it
with ADJUST. The call sequence is

@ gagemo:demo-adjust Amp Pos Width Noise

where Amp is the desired amplitude, Pos the position, Width the width
and Noise the noise on the data.

! Procedure gag_demo:demo-adjust
!
! An example of ADJUST usage
! For simplicity, let us define the GAUSSIAN function
define function gauss(x,a,b,c) a*exp(-0.5*((x-b)/c)^2)
!
! The Gaussian parameters, Amplitude, Position and Width
define double amp pos width /global
! Now the data...
define integer nx
let nx 512
define double xx[nx] my_data[nx] /global
! Define the Measurement points XX
let xx[i] 10*(i-nx/2)/nx
!
! Fill the data with some noisy values. In reality, this may come from

9 ADJUST LANGUAGE INTERNAL HELP 117

! an experiment or observation
let my_data gauss(xx,&1,&2,&3)
let my_data[i] my_data+&4*noise(i/i)
!
begin procedure my_difference

let ADJ%res my_data-gauss(xx,amp,pos,width)
end procedure my_difference
!
! Minimize
adjust my_data "@ my_difference" /start 3 2 1 /par amp pos width /root ADJ
examine ADJ%PAR
examine ADJ%ERRORS

9.2.2 ADJUST /EPSILON

This option is used to specify the desired tolerance. Its interpre-
tation is method dependent. For SIMPLEX and POWELL, it means the rela-
tive deviation of the mean squared difference of two fit iterations. For
SLATEC, which uses non-reduced chi-2, it is the absolute difference be-
tween two iterations. For ANNEAL, its interpretation is totally differ-
ent.

Use default value 0 to let the program guess. In subtle cases, or to
gain speed in case a coarse result is desired, use values around 1D-5
for SIMPLEX and POWELL, and of order 1 for SLATEC (provided your weights
are really 1/sigma^2...). For ANNEAL, see details in the /METHOD option.

Note that this is not the absolute error of the fit parameters.

9.2.3 ADJUST /METHOD

ANNEAL Simulated annealing technique. This may require a very large
number of function evaluation.

POWELL Gradient using the Powell method with the Davidon-Fletcher
variable metric.

SIMPLEX Classical Simplex amoeba search
ROBUST A combination of Simplex + Slatec, to be used with large

enough initial steps.
SLATEC Modified Levenberg Marquardt method with adaptive steps, as

implemented in the Slatec (LINPACK) library

All methods require a proper choice of initial values and steps. The AN-
NEAL method is much more robust against poor guesses, but may require 10
to 100 times more function evaluations than any other. It is also dif-
ficult to control.

9 ADJUST LANGUAGE INTERNAL HELP 118

9.2.4 ADJUST /START

[ADJUST\]ADJUST My_Data "My Command" /START G1 G2 ... Gn

G1 G2 .. Qn are used to pass starting guesses for the parameters P1 to
Pn. The default is 1.0. The starting values should not be too far from
a potential solution, otherwise the convergence may not be possible.

9.2.5 ADJUST /STEP

[ADJUST\]ADJUST My_Data "My Command" /STEP S1 S2 .. Sn

S1 S2 .. Sn are used to pass the unity vectors (steps) for the iteration
on parameters P1 to. Pn. The default depends on the starting guesses Gi:
Si is equal to abs(0.1 x Gi) or 0.1 if Gi is 0.0 . Poor choice of ini-
tial steps may lead to non convergence. Too small steps will not help
converging when one starts too far from the solution. Too large steps
may lead to incorrect evaluation of the parameter errors. The optimal
step for the determination of the errors is about the error bar, so that
all parameters become dimensionless.

9.2.6 ADJUST /PARAMETER

[ADJUST\]ADJUST My_Data "My Command" /PARAMETER Aname Bname Cname
[...]

Defines the parameter names. The parameter names are Global SIC vari-
ables which are then used in the user supplied command to compute the
model. The variables must exist: they are not created by the ADJUST com-
mand.

9.2.7 ADJUST /QUIET

Requires ADJUST to be silent (useful to avoid too many messages in
loops).

9.2.8 ADJUST /WEIGHTS

[ADJUST\]ADJUST My_Data "My Command" /WEIGHT My_weights

Define the weights of each data. The array My_Weights must be real, and
of same size as the array My_Data.

9.2.9 ADJUST /BOUNDS

[ADJUST\]ADJUST My_Data "My Command" /PARAMETER Aname Bname Cname
[...] /BOUNDS Name1 Low1 High1 [Name2 Low2 High2 ...]]

9 ADJUST LANGUAGE INTERNAL HELP 119

Specify the search boundaries for some parameters. This can be useful to
prevent the minimization to enter non physical regions. The code does
not (yet) support one sided boundaries such as [Low, +Inf[

Caution:
/BOUNDS is still experimental and may affect the values of the error
bars. Please check the result using unbounded minimization once a mini-
mum has been found with a bounded search.

9.3 EMCEE

[ADJUST\]EMCEE [Data Command] [/BEGIN] [/BOUNDS Par Low Up [...]]
[/LENGTH Length] [/PARAMETERS Va Vb Vc ...] [/START A1 B1 C1 ...]
[/STEP A2 B2 C2 ...] [/WALKERS NWalk] [/ROOT_NAME Root]

Foreword: this command is a wrapper around the "emcee" Python module.
Gildas must have been compiled with the Gildas-Python binding enabled,
and the modules "emcee" and "pickle" must be installed in your Python
version.

Prepare, begin or continue a Monte Carlo Markov Chain using the EMCEE
method.

Command is the command line which computes a Chi^2 function on your da-
ta. Typically, it is "@ my_chi2" where my_chi2 is a script gathering
all necessary computations. The resulting chi^2 must be put into the
global variable EMCEE%CHI2

Argument Data is unused so far.

The command has 3 forms. Without argument, it can accept only options
/BEGIN and /LENGTH. It then begins or continues a previously defined
MCMC chain. With arguments, the /PARAMETER option must be present. The
EMCEE command then defines all parameters for the MCMC chain, and op-
tionally starts it if /BEGIN is present.

9.3.1 EMCEE Caution

- Contrary to MFIT or ADJUST, EMCEE does ***NOT*** return best fit val-
ues. This can be done a posteriori using the ESHOW command.

- EMCEE cannot be interrupted by ^C. While EMCEE will react to ^C, it
will not stop properly. You may no longer be able to continue after-

9 ADJUST LANGUAGE INTERNAL HELP 120

wards, and you may have to kill the whole process. This is because it
uses an intrincate nesting of SIC and Python commands and macros.

9.3.2 EMCEE Credits

The EMCEE method uses the affine-invariant ensemble sampler proposed
by Goodman & Weare (2010). The implementation is based on the "emcee"
Python implementation developped by Foreman Mac-Key et al 2012, and is
only available with the Python binding of SIC.

9.3.3 EMCEE Example

The following demo will fit a Gaussian. Amp must be in range [5,15],
Pos in range [-1,1] and Width in range [0,3].
!
! @ gag_demo:demo-emcee Amp Pos Width Noise
!
! An example of EMCEE usage
! For simplicity, let us define the GAUSSIAN function
define function gauss(x,a,b,c) a*exp(-0.5*((x-b)/c)^2)
!
if .not.exist(my_data) then

! The Gaussian parameters, Amplitude, Position and Width
define double amp pos width /global
! Now the data...
define integer nx
let nx 512
define double my_xx[nx] my_data[nx] my_noise /global
! Define the Measurement points XX
let my_xx[i] 10*(i-nx/2)/nx

endif
!
! Fill the data with some noisy values. In reality, this may come from
! an experiment or observation
let my_noise &4
let my_data gauss(my_xx,&1,&2,&3)
let my_data[i] my_data+my_noise*noise(i/i)
!
! Start with some random value
let amp &1*(1+noise(my_noise))
let width &3*(1+noise(my_noise))
let pos &2+noise(my_noise)
!
begin procedure my_chi2

define double res /like my_data
let res my_data-gauss(my_xx,amp,pos,width)

9 ADJUST LANGUAGE INTERNAL HELP 121

let res (res/my_noise)^2
compute emcee%chi2 sum res ! The Chi^2 must be returned here
@ emcee-timer ! Optional: report advances in the chain

end procedure my_chi2
!
emcee my_data "@ my_chi2" /start ’amp’ ’pos’ ’width’ -

/par amp pos width /bound amp 5 15 pos -1 1 width 0 10 -
/step 0.02 0.02 0.02 /length 100 /walk 4 /begin

for i 1 to 4
emcee

next
!

9.3.4 EMCEE /BEGIN

[ADJUST\]EMCEE Data Command /BEGIN [/BOUNDS Par Low Up [...]]
[/LENGTH Length] /PARAMETERS Va Vb Vc ... [/START A1 B1 C1 ...] [/STEP
A2 B2 C2 ...] [/WALKERS NWalk] [/ROOT_NAME Root]

or

[ADJUST\]EMCEE /BEGIN [/LENGTH Length]

Start a Monte Carlo Markov Chain using the EMCEE method. The short
form uses parameters defined in a previous EMCEE command.

9.3.5 EMCEE /BOUNDS

[ADJUST\]EMCEE Data Command [/BEGIN] /BOUNDS Par Low Up [...]
[/LENGTH Length] /PARAMETERS Va Vb Vc ... [/START A1 B1 C1 ...] [/STEP
A2 B2 C2 ...] [/WALKERS NWalk]

Specify the parameter bounds for some or all parameters. If not speci-
fied, the bounds are derived from +/- 10 times the parameter step.

9.3.6 EMCEE /LENGTH

[ADJUST\]EMCEE [Data Command] [/BEGIN] [/BOUNDS Par Low Up [...]]
/LENGTH Length [/PARAMETERS Va Vb Vc ...] [/START A1 B1 C1 ...] [/STEP
A2 B2 C2 ...] [/WALKERS NWalk]

Specify the length of the MCMC chain. The total number of executions
will be the Length times the number of parameters times the number of
walkers per parameter. Length is the only control allowed to change
when restarting a MCMC chain.

9.3.7 EMCEE /PARAMETERS

[ADJUST\]EMCEE Data Command [/BEGIN] [/BOUNDS Par Low Up [...]]

9 ADJUST LANGUAGE INTERNAL HELP 122

[/LENGTH Length] /PARAMETERS Va Vb Vc ... [/START A1 B1 C1 ...] [/STEP
A2 B2 C2 ...] [/WALKERS NWalk]

Specify the parameter names. These must be global SIC variables, so that
they can be used the the "Command" computing the Chi^2.

9.3.8 EMCEE /ROOT NAME

[ADJUST\]EMCEE Data Command [/BEGIN] [/BOUNDS Par Low Up [...]]
[/LENGTH Length] /PARAMETERS Va Vb Vc ... [/START A1 B1 C1 ...] [/STEP
A2 B2 C2 ...] [/WALKERS NWalk] /ROOT_NAME RootName

where Root is the name given in the /ROOT_NAME option (default is ADJ or
MFIT).

Specify the root name for the results. Results are ***NOT*** computed
by the EMCEEE command, but by the ESHOW command (ESHOW Errors or ESHOW
Results). They will be returned in RootName%PAR and RootName%ERRORS,
like for commands MFIT or ADJUST.

9.3.9 EMCEE /START

[ADJUST\]EMCEE Data Command [/BEGIN] [/BOUNDS Par Low Up [...]]
[/LENGTH Length] /PARAMETERS Va Vb Vc ... /START A1 B1 C1 ... [/STEP A2
B2 C2 ...] [/WALKERS NWalk]

Specify the starting values for the parameters (in the same order as the
parameter names).

9.3.10 EMCEE /STEP

[ADJUST\]EMCEE Data Command [/BEGIN] [/BOUNDS Par Low Up [...]]
[/LENGTH Length] /PARAMETERS Va Vb Vc ... [/START A1 B1 C1 ...] /STEP
A2 B2 C2 ... [/WALKERS NWalk]

Specify the random steps for the parameters (in the same order as the
parameter names). If no bound is specified, the Lower and Upper bounds
are +/- 10 times the step away from the starting value.

9.3.11 EMCEE /WALKERS

[ADJUST\]EMCEE Data Command [/BEGIN] [/BOUNDS Par Low Up [...]]
[/LENGTH Length] /PARAMETERS Va Vb Vc ... [/START A1 B1 C1 ...] [/STEP
A2 B2 C2 ...] [/WALKERS NWalk]

Specify the number of walkers per parameter.

9 ADJUST LANGUAGE INTERNAL HELP 123

9.4 ESHOW

[ADJUST\]ESHOW AUTOCORR|CHAINS|ERRORS|TRIANGLES [Args ...] [BURN
Burn] [/SPLIT]

Show some results of an EMCEE Markov Chain. Except for ESHOW RESULTS and
ESHOW ERRORS, GreG must be available for this action. (Trick: if it is
not, just use command IMPORT MAPPING, and it will be...)

9.4.1 ESHOW AUTOCORR

[ADJUST\]ESHOW AUTOCORR [Length] [/SPLIT] [/BURN Burn]

Plot the time correlation for the parameters, and compute the autocorre-
lation length up to the specified Length (default 100). "Burn" is the
number of steps which must be ignored at the beginning of the EMCEE
chain before performing the action. Default is 50. /SPLIT option will
compute this for each chain instead of globally.

9.4.2 ESHOW CHAINS

[ADJUST\]ESHOW CHAINS [Last]

Plot the MCMC chains. Number indicates the last iteration to be dis-
played.

9.4.3 ESHOW ERRORS

[ADJUST\]ESHOW ERRORS [/BURN Burn]

Print on screen the most likely values and their (asymmetric) errors.
"Burn" is the number of steps which must be ignored at the beginning of
the EMCEE chain before performing the action. Default is 50.

Results (median of the distribution) and Errors (68 percentiles) are
also returned by this command, in variables RootName%PAR and Root-
Name%ERRORS (where RootName is the name specified in option /ROOT_NAME
of command EMCEE), like for commands MFIT or ADJUST. The original vari-
ables specified in the /PARAMETER option of command EMCEE are also set
to their median values.

9.4.4 ESHOW RESULTS

[ADJUST\]ESHOW Results [Filename] [/BURN Burn]

Print the results and errors (symmetric and asymmetric) errors in a
file. "Burn" is the number of steps which must be ignored at the begin-
ning of the EMCEE chain before performing the action. Default is 50.

10 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 124

Results (median of the distribution) and Errors (68 percentiles) are
also returned by this command, in variables RootName%PAR and Root-
Name%ERRORS (where RootName is the name specified in option /ROOT_NAME
of command EMCEE), like for commands MFIT or ADJUST. The original vari-
ables specified in the /PARAMETER option of command EMCEE are also set
to their median values.

The created script is called ’Filename’.sic (default results.sic) and
when executed, will print the results on screen in the same format as
the ESHOW Errors command. The script can be customized by re-defining
symbol emcee_result (which by default executes "@ emcee-error").

9.4.5 ESHOW TRIANGLES

[ADJUST\]ESHOW TRIANGLES [Parameter] [/BURN Burn]

Plot the 2x2 correlation surfaces for all parameters. If a Parameter
name is given, only plot the correlation with this parameter.

"Burn" is the number of steps which must be ignored at the beginning of
the EMCEE chain before performing the action. Default is 50.

9.4.6 ESHOW /BURN

[ADJUST\]ESHOW Action [Parameter] /BURN Burn

Indicate the size of the "burn-out" region, i.e. how many steps must be
ignored at the beginning of the chains. Default is 50.

9.4.7 ESHOW /SPLIT

[ADJUST\]ESHOW AUTO [length] [/BURN Burn] /SPLIT

Plot the time correlation for the parameters, and compute the autocorre-
lation length for each chain.

10 SIC Error Messages and Recovery Procedures

sic may output a number of error messages. These are usually self explanatory, and most of them
refer to typing errors, or to an unanticipated degree of complexity reached during the program
execution (too many loops, macros, complex mathematic formulas, etc...). More severe errors
may appear, usually due to internal logic errors in the calling program. SIC is a relatively safe
program. However, its very flexible possibilities, and in particular the possibility of calling it as
a command monitor in multi-language application, possibly written independently by different
programmers, make it very difficult to be error free. This section list all the error messages
written by SIC, and some (but not all) information messages. The format of a SIC message is
the following

C-FACILITY, Explanation text

10 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 125

C is a letter indicating the severity of the message, and may be :

I for Information

W for Warning. Normal execution can proceed, but the operation was not completed.

E for Error. Something really went wrong, and a corrective action should (usually) take place.
Suggested actions are mentioned.

F for Fatal Error. This is a programming error, either in SIC, or in the calling program, or an
unrecoverable error causing a program abort (such as a PAUSE in batch sessions).

FACILITY is a mnemonic of the subroutine or of the command where the error occured.
"Explanation text" is a concise but usually self explanatory message.
In case of Fatal errors, the “recovery procedure” usually indicates to “Submit an SPR”. An

SPR is a Software Performance Report, and it should be sent to the sic authors, by E-Mail at

gildas@iram.fr

(GILDAS is a reserved account for all gildas software).

10 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 126

List of Error Messages

10.1 A through C

E-COMPUTE, TRANSPOSE not implemented
SIC, COMPUTE command. Self explanatory...
User action : If your variables are images, use the VECTOR\TRANSPOSE command instead.

E-COMPUTE, Variable cannot be written
SIC, COMPUTE command. The output variable is defined ReadOnly.
User action : Probably a user error. Check your variable name. If it is what you wanted,
it means you are trying to overwrite a protected program defined variable, and this is
forbidden of course.

E-COMPUTE, Variable must be Real
SIC, COMPUTE command. The required actions operate only on Real variables.
User action : Define intermediate variables if necessary.

E-COMPUTE, Invalid OUTPUT variable dimensions
SIC, COMPUTE command on Fast Fourier Transform action.
User action : See Help.

10.2 D

E-DECODE, Invalid arithmetic expression
SIC, Argument decoding routines. An arithmetic expression used as argument is invalid.
The message is usually preceded by more detailed explanation.
User action : correct the expression. If a message ”Internal logic error” appeared, submit
an SPR.

E-DECODE, Invalid logical expression
SIC, Argument decoding routines. A logical expression used as argument is invalid. The
message is usually preceded by more detailed explanation.
User action : correct the expression. If a message “Internal logic error” appeared, submit
an SPR.

E-DECODE, Error computing <String>
SIC, Argument decoding routines. Some error occured during evaluation of a valid arith-
metic expression. A more detailed text precedes this message. This is usually due to
undefined variables, or arithmetic errors like square root of negative values.
User action : correct any typing error. Check values of variables if an arithmetic error
occured.

E-DECODE, Option <Integer> or argument <Integer> out of bounds
SIC, Argument decoding routines. This is a programming error : a command required too
many arguments or options.
User action : Notify the programmer who should consult the sic programming manual.

E-DECODE, You have overwritten the command line pointers.
SIC, Argument decoding routines. This is a programming error: the program tries retrieving
an argument after another command line has been analysed. This frequently occurs when

10 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 127

greg is called in library mode by another program. This should only be done AFTER all
arguments have been retrieved.
User action : Notify the programmer who should retrieve all needed arguments before he
starts analysing another line.

E-DECODE, Missing argument number <Integer> of Command <String>

E-DECODE, Missing argument number <Integer> of Option <String>
SIC, Argument decoding routines. The specified argument is mandatory for the command
or option.
User action : specify the missing argument.

E-DEFINE, Cannot specify dimension for existing images
SIC, DEFINE or LET /NEW commands. Dimensions can only be specified when creating an
image.
User action : Don’t specify a dimension for existing images.

E-DEFINE, Invalid variable name <String>
SIC, DEFINE or LET /NEW commands. Variable names must be less than 15 characters
and begin with a letter.
User action : choose a valid name.

E-DEFINE, Invalid status <String>
SIC, DEFINE HEADER command. The header status can only be Read or Write.
User action : May be you confused DEFINE IMAGE and DEFINE HEADER. Correct your
typing.

E-DEFINE, Memory allocation failure
SIC, DEFINE or LET /NEW commands. The memory needed to create the variable could
not be obtained from the operating system, due to a shortage of system resources or quota.
This message is may be preceded by an operating system error message. On a typical site,
this error will only occur if you are using (very) big arrays.
User action : delete any unused variable, clear the plot if any, and then retry. Try to use
images instead of arrays. If this does not work, exit the program, reenter it and retry. If
this is not sufficient, consider whether you really need such big arrays. If the answer is yes,
you might consider asking your system manager to increase the relevant quota.

E-DEFINE, Missing dimension of new image
SIC, DEFINE command. The dimension of a new image must be specified
User action : specify the dimension.

E-DEFINE, Only last dimension can be extended
SIC, DEFINE command. The EXTEND request is not acceptable.
User action : see DEFINE IMAGE internal help.

E-DEFINE, Syntax error
SIC, DEFINE FUNCTION command. The function definition is invalid.

E-DEFINE, Too many variables
SIC, DEFINE or LET /NEW commands.
User action : delete some existing variables, or use them instead of defining a new one. If
you cannot, ask your system manager about increas sic workspace.

10 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 128

E-DEFINE, Too many arguments
SIC, DEFINE FUNCTION command. Invalid syntax: only one function definition at a time
is possible
User action : use several DEFINE FUNCTION commands if necessary.

E-DEFINE, Variable <String> already exists
SIC, DEFINE or LET /NEW commands. The specified name already is a known variable.
User action : use another name, or use (with command LET the already defined variable if
you believe you may do so.

E-DELETE, Incompatible options
SIC, DELETE command. The options /FUNCTION, /SYMBOL and /VARIABLE are mutually
exclusive.

E-DELETE, Missing option
SIC, DELETE command. One of the options /FUNCTION /SYMBOL and /VARIABLE must be
present.

E-DELETE, No such variable <String> SIC, DELETE command. The specified variable can-
not be deleted because it does not exist.

E-DELETE, Variable <String> not deleted SIC, DELETE command. The variable could not
be deleted, because it is program defined
User action : May be a typing error. Check the variable name.

E-DIMENSION, Invalid dimension <string>
Any command with a numerical argument. In the present version of sic indexes of arrays
can only be constants or scalar numerical variables. Complex numerical expressions are not
allowed.
User action : use an intermediate variable.

E-DIMENSION, Invalid mixture of implicit and explicit dimensions
SIC, LET command. Implicit loops on arrays cannot be mixed with explicit indexes for
other dimensions.
User action : either use an explicit FOR-NEXT loop, or rearrange your expression to use the
implicit loop (which is much faster).

E-DIMENSION, Invalid string length <Number>
SIC, DEFINE or LET /NEW commands. Character variable is not positive.

E-DIMENSION, Invalid variable name <string>
SIC, DEFINE or LET /NEW commands. Variable names must be less than 15 characters
and begin with a letter.
User action : choose a valid name.

E-DIMENSION, Missing character size
SIC, DEFINE or LET /NEW commands. The size of character string must be specified.
User action : specify a length.

E-DIMENSION, Missing closing bracket
Any command with a numerical argument. An opening bracket is not matched with the
corresponding closing bracket.
User action : add the appropriate closing bracket.

10 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 129

E-DIMENSION, Too many dimensions
SIC, DEFINE or LET /NEW commands. Only 4 dimensions are supported.
User action : decrease the number of dimensions.

10.3 E

I-EDIT, Using <String> editor
SIC, EDIT command with argument, information message. The specified editor is called
to edit the file specified as argument. Control will return to sic after the editing session.

I-EDIT, Writing stack content on STACK.Ext
SIC, EDIT command without argument, information message. STACK.Ext, where Ext is
the current macro extension, will be edited using current editor.

E-EDIT, File name too long
SIC, EDIT command. The corresponding file cannot be edited.

E-ELSE, Invalid argument <String>
SIC, ELSE command was followed by an invalid first argument.
User action : correct typing error. ELSE can only have no argument or IF as first argument.

E-ELSE IF, Invalid syntax
SIC, ELSE command with argument IF. The only accepted syntaxes for ELSE IF are:
ELSE IF <logical expression>
and
ELSE IF <logical expression> THEN

I-ERROR, occured in <String> at line <Integer>

I-ERROR, occured in Loop <Integer> (<Real>) at Line <Integer>
SIC, error traceback facility. The message contains traceback of an execution error while
executing nested macros, stack or loops. Macro names, loop number and index values are
given together with the lines being executed.
User action : If a PAUSE occurred correct the erroneous line, execute it and continue the
nested macros execution by command CONTINUE, or abort execution by command SIC\QUIT.
If an error recovery command is active, it has been automatically executed before resuming
the nested macros execution.

I-ERROR, occured in Program
SIC, error traceback facility. An error occurred in subroutine mode.
User action : signal the error to the programmer.

I-ERROR, occured in Error recovery mode
SIC, error traceback facility. An error occurred in the error recovery command or procedure.
A PAUSE is issued.
User action : correct the erroneous recovery procedure and resume execution.

F-EVALUATE, Invalid precision <Integer>
Any command with a numerical argument. This is an internal logic error in the arithmetic
processor (or a memory error on your machine!).
User action : Please submit an SPR. If you need the result, try toF modify your expression
(reorder, use intermediate variables...).

10 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 130

F-EVALUATE, Internal logic error
Any command with a numerical argument. This is an internal error in SIC.
User action : submit an SPR. You can try going around the error by modifying your
expression.

E-EXAMINE, Undefined variable <String>
SIC, EXAMINE command with an argument. The specified variable does not exist.
User action : check for typing errors.

F-EXAMINE, Invalid data format, internal logic error
SIC, EXAMINE command.
User action : Submit an SPR.

W-EXAMINE, No known variable
SIC, EXAMINE command without argument. No variable has been defined yet.

10.4 F

E-FOR, Empty list
SIC, FOR command. The compilation mode is not entered.
User action : Reenter FOR command with a list of values.

E-FOR, Incomplete list :
SIC, FOR command. The invalid list is typed with a pointer to the error.
User action : correct the error.

E-FOR, Input level too deep
SIC, FOR command. The execution level is too high, too many macros or loops are nested,
the loop cannot be executed.
User action : avoid so deeply nested situations by concatenating all macros in a single one
instead of nesting them. Deep nesting (more than 8 execution levels) is almost invariably
unnecessary.

E-FOR, Invalid loop :
SIC, FOR command. The invalid list is typed with a pointer to the error.
User action : correct the error.

E-FOR, Logical expression is too long
SIC, FOR command with /WHILE option. The logical expression specified in the /WHILE
option is too long to be stored and evaluated.
User action : make it simpler using intermediate variables.

I-FOR, Loop <Integer> has finished
SIC, VERIFY mode. Information message

I-FOR, Loop <Integer> is running with index <Real>
SIC, VERIFY mode. Information message.

W-FOR, Loop <Integer> compilation aborted
SIC, loop compilation mode. This message is typed after a QUIT command has been typed
to abort a loop compilation.

10 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 131

E-FOR, Loop buffer overflow
SIC, loop compilation mode. Too many commands were entered in the loop buffers. Loop
compilation failed.
User action : Put the remaining commands in a macro, and execute the macro within the
loop.

W-FOR, Line not valid in this context, ignored
SIC, loop compilation. The user attempted to insert an invalid command (such as HELP,
EDIT) into a loop buffer.
User action : such commands cannot be placed in loops.

W-FOR, No variable or list
SIC, FOR command. Either the loop variable or the list of values is missing.
User action : Correct the command line.

E-FOR, Only <Integer> levels of FOR - NEXT loops
SIC, FOR command. The user attempt to nest too many loops.
User action : find another solution to your problem than nesting so many loops.

E-FOR, Syntax error in list :
SIC, FOR command. The invalid list is typed with a pointer to the error.
User action : correct the error.

E-FOR, Too many arguments in list
SIC, FOR command. The FOR list is too long.
User action : Run two (or more) consecutive loops with part of the list to span all values
in your original list.

E-FUNCTION, Invalid function name <string>
SIC, function definition routine. A user program defined function has an invalid name.
Function names are limited to 15 characters and must begin with a letter. This is a
programming error.
User action : notify the programmer.

F-FUNCTION, SIC is not loaded
SIC, function definition routine. The program tries to define a function before sic has been
initialized. This is a programming error.
User action : notify the programmer.

E-FUNCTION, Too many arguments to function
SIC, function definition routine. A user program defined function has too many arguments.
Function cannot have more than 4 arguments. This is a programming error.
User action : notify the programmer.

E-FUNCTION, Too many functions
SIC, function definition routine. The program attempts to define too many user functions.
This is a programming error.
User action : notify the programmer who should contact the authors if he really needs so
many functions.

10 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 132

E-FUNCTION, <Integer> arguments to function <String>
SIC, function definition routine. A user defined function has a negative number of argu-
ments. This is a programming error.
User action : notify the programmer.

10.5 G

E-GETCOM, Line too long, buffer overflow
SIC, command reading routine. The command line is too long for the internal buffer.
User action : make it shorter if possible. If not, ask the programmer to increase the line
buffer size and relink the program. (Maximum line length in sic is 2048 characters, so we
hardly think you may be limited by this).

E-GETCOM, Read error on macro file, unit <Number>
SIC, command reading routine. An error occured while reading command from a macro.
User action : this is most likely due to a hardware problem, unless you are attempting to
read a binary file. . . Check the macro. Type the macro to see what command could not be
read, execute it and resume macro execution.

10.6 H

W-HELP, Error opening <String>
SIC, HELP command. The Help file for a language does not exist.
User action : check with the programmer or system manager that all logical names have
been correctly defined.

W-HELP, Language <String> is in library only mode
SIC, HELP command. The specified language is in library mode, no help is available for it.
User action : commands from this language cannot be accessed interactively, except by
specifying the full language name.

W-HELP, No help for <String>
SIC, HELP command. The specified command ¡String¿ is not documented.
User action : unless you are quite sure of their behaviour (or you like risks) avoid using
those undocumented commands.

10.7 I

E-IF, Invalid syntax
SIC, IF command. The second argument of the command (if present) was not THEN.

E-IMPLICIT, Invalid variable name <string>
SIC, LET command. A variable used in the implicit loop has an invalid name. Variable
names must be shorter than 15 characters and begin with a letter.
User action : Use a valid variable name.

E-IMPLICIT, Too many variables
SIC, LET command. The total number of variables defined exceeds the SIC limit. Tempo-
rary variables used in implicit loops are included in this count.
User action : Delete a few useless variables and retry.

10 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 133

E-IMPLICIT, Variable already exist
SIC, LET command. This is an internal logic error.
User action : Submit an SPR. While waiting for the correction, you may try modifying
your expression.

E-INCARNATE, Bad incarnation type
SIC, type conversion routine. The type conversion routine was called with a non numeric
output type. This is a programming error.
User action : Notify the programmer.

E-INCARNATE, Bad variable type
SIC, type conversion routine. The type conversion routine was called with a non numeric
input type. This is a programming error.
User action : Notify the programmer.

E-INTER, Ambiguous command, could be :
SIC, monitor routine. The command name is ambiguous.
User action : specify more characters or specify language to avoid ambiguities.

E-INTER, Ambiguous option, could be :
SIC, monitor routine. The option name is ambiguous.
User action : specify more characters.

W-INTER, No command on line
SIC, monitor routine. A command line only contained the language field.

E-INTER, Too many words in line
SIC, monitor routine. The user program tried to access more than 100 arguments. This is
a programming error.
User action : if you really need so many arguments, submit an SPR.

E-INTER, No options allowed for command <String>
SIC, monitor routine. The command has no options.
User action : Suppress options from the command line.

E-INTER, Unbalanced quote count
SIC, monitor routine. A command line has an odd number of double quotes.
User action : Correct typing mistake and reenter command.

E-INTER, Unknown command
SIC, monitor routine. The command does not exist in any active language.
User action : check spelling or bring more languages in the active scope (Command
SIC\SIC).

E-INTER, Unknown command <String> for language <String>
SIC, monitor routine. The command does not exist in the specified language.
User action : check spelling.

E-INTER, Unknown language <String>
SIC, monitor routine. The specified language is not known.
User action : Check spelling. If good, verify you are using the right program.

10 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 134

E-INTER, Unknown option <String> for command <String>
SIC, monitor routine. The command has no such option
User action : check spelling.

10.8 J trough L

F-LET, Cannot assign arrays
SIC, calling program. This is a programming error. The program attempts to assign values
to an array through a call to SIC LET REAL (or SIC LET INTE. . .). This is not allowed.
User action : notify the programmer. If you need to assign values to an array, call
SIC DESCRIPTOR and do the assignment in your program.

E-LET, Header structures cannot be assigned
SIC, LET command. The variable to be assigned is a generic header name.
User action : Add the % symbol after the generic header name to assign a header structure.

E-LET, Invalid attribute <string>
SIC, LET /NEW command. The only recognised attributes for a variable are GLOBAL and
LOCAL.

E-LET, Memory allocation failure
SIC, LET commands. The memory needed as work space could not be obtained from the
operating system, due to a shortage of system resources or quota. This message is preceded
by the VMS error message. On a typical site, this error will only occur if you are using
(very) big arrays or images.
User action : delete any unused variable, and then retry. If this does not work, exit the
program, reenter it and retry. If this is not sufficient, consider whether you really need such
big arrays. If the answer is yes, you might consider asking your system manager to increase
the relevant quota.

E-LET, Operation not supported on string arrays
SIC, LET command. String arrays cannot be assigned directly.
User action : Define the string arrays element by element, using a loop.

E-LET, Readonly variables cannot be modified
SIC, LET command. You are attempting to modify a protected variable declared by the
program.
User action : this is not allowed. Define another variable if you need temporary storage.

E-LET, Readonly headers cannot be modified
SIC, LET command. You are attempting to modify a protected header.
User action : This is not allowed. Redefine the header with write access if needed.

E-LET, Trailing arguments in assignement
SIC, LET command. While trying to use the element by element LET command, you omitted
or added one argument.
User action : Check the array size, and count the number of arguments.

E-LET, Undefined header <String>
SIC, LET command. The assigned header is not defined.
User action : Check variable name for typing error.

10 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 135

E-LET, Undefined variable <String>
SIC, LET command. The assigned variable is not defined.
User action : first check variable name for typing error. If you want to assign a new variable,
use DEFINE command or option /NEW of command LET to define it.

E-LET, Variable type does not match declaration
SIC, SIC LET xxx subroutine. This is a programming error. The program attempted to
assign a value of wrong type to a defined variable.
User action : notify the programmer.

E-LOGICAL, Error evaluating <String>
SIC, argument decoding routine. Evaluation of a logical expression failed. This message
is usually preceded by a more detailed text indicating why the expression could not be
evaluated.
User action : check for undefined variables.

E-LOGICAL, Invalid logical expression
SIC, argument decoding routine. An invalid logical expression was found (most likely in
an IF, FOR /WHILE or ELSE IF command). This message is usually preceded by a more
detailed text indicating why the expression is invalid.
User action : correct the expression.

10.9 M

E-MACRO, Input level too deep
SIC, @ command. A macro could not be executed due to an execution level too high.
User action : finish some macro execution before activating this one. Eventually, you may
need to rearrange your macros to avoid so many execution levels.

E-MACRO, Recursive call to macro <String>
SIC, @ command. A recursive call occurred to the specified macro.
User action : correct the macros which are causing this problem, recursive calls are prohib-
ited.

E-MACRO, Unable to open macro <String>
SIC, @ command. The macro file could not be opened for read.
User action : check for typing error, and possibly for privilege violation. This message is
followed by a second line of text indicating a more precise reason.

E-MATH, Unmatch Closing bracket
SIC, Mathematic and logical expression analysis modules.
User action : Correct the typing error.

E-MATH, Missing operator after string
SIC, function definition module. The expression is incorrect.
User action : Correct the typing error (misplaced parenthesis normally).

E-MTH, Arithmetic expression is too complex
SIC, Mathematic and logical expression analysis modules. The expression could not be
analyzed because of complexity.
User action : break it in several expression, using intermediate variables.

10 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 136

E-MTH, Error in FIND OPERATOR

E-MTH, Error in READ OPERAND
SIC, Mathematic and logical expression analysis modules. These message usually follows
more specific ones.
User action : In case the other messages require to submit an SPR, please indicate the
complete list of error messages from MTH.

E-MTH, Comparing arrays of inconsistent dimensions
SIC, Mathematic and logical expression analysis modules. An expression contains an illegal
mix of arrays with different dimensions.
User action : You probably got confused with variable names. Correct the expression.

E-MTH, Comparing non scalar variables
SIC, Mathematic and logical expression analysis modules. A logical expression attempts to
compare by order (.GT. .LT. .GE. and .LE.) two arrays. Such comparisons are invalid.
User action : You probably got confused with variable names. Correct the expression.

E-MTH, Error reading operand <String>
SIC, Mathematic and logical expression analysis modules. The corresponding string could
not be analyzed.
User action : Correct anay (likely) typing error.

W-MTH, Free operand in BUILD TREE
SIC, Mathematic and logical expression analysis modules. This is an internal logic error.
Some work space allocated during evaluation has not been freed correctly. The result is
nonetheless correct.
User action : Submit an SPR, with the faulty mathematic formula.

E-MTH, Inconsistent mixture of Arithmeti, Logical and Character expression
SIC, Mathematic and logical expression analysis modules. The expression is invalid.
User action : Correct your expression (you got confused about variable types, most likely).

F-MTH, Internal logic error in <String>
SIC, Mathematic and logical expression analysis modules. An expression was successfully
analyzed, but could not be evaluated because of an internal error in the analysis modules.
User action : Submit an SPR, with the faulty mathematic formula. Simplify your formula,
or add parenthesis to avoid possible ambiguities and try again. Eventually break your
formula into several consecutive ones.

F-MTH, Invalid arithmetic formula
SIC, Mathematic and logical expression analysis modules. The formula is invalid.
User action : Correct it. You may have confused some operators or variables.

F-MTH, Invalid character string <String>
SIC, Mathematic and logical expression analysis modules. The character string is invalid
(empty string, or missing closing quote (′′)
User action : Correct it. You may have confused some operators or variables.

10 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 137

F-MTH, Invalid number of arguments in call to <String>
SIC, Mathematic and logical expression analysis modules. The function call list is incorrect.
User action : Correct it.

F-MTH, Invalid syntax
SIC, Mathematic and logical expression analysis modules. This is an internal logic error.
An expression contained only opening parenthesis.
User action : Submit an SPR with the faulty expression.

E-MTH, Level <Number> should already have been evaluated
SIC, Mathematic and logical expression analysis modules. This is an internal logic error.
User action : Submit an SPR with the faulty expression.

E-MTH, Mathematics on arrays of inconsistent dimensions
SIC, Mathematic and logical expression analysis modules. You are trying to combine arrays
with inconsistent dimensions.
User action : Correct the expression.

E-MTH, Memory allocation failure
SIC, LET command. Memory needed as work space could not be obtained from the oper-
ating system, due to a shortage of system resources or quota. On a typical site, this error
will only occur if you are using (very) big arrays.
User action : delete any unused variable, clear the plot if any, and then retry. If this does
not work, exit the program, reenter it and retry. If this does not work, try using images
instead of arrays. If this is not sufficient, consider whether you really need such big arrays.
If the answer is yes, you might consider asking your system manager to increase the relevant
quota.

W-MTH, Missing operand in formula <String>
SIC, Mathematic and logical expression analysis modules. One operator or function is left
without operand after parsing.
User action : Correct the expression.

E-MTH, Missing operator after closing bracket
SIC, Mathematic and logical expression analysis modules.
User action : Correct the expression.

E-MTH, Result type mismatch
SIC, Mathematic and logical expression analysis modules. You are trying to assign a logical
value to a numerical variable or so.
User action : Correct the expression.

W-MTH, Result was not yet assigned
SIC, Mathematic and logical expression analysis modules. This is an internal logic error.
An expression was successfully analyzed, but could not be evaluated because of an internal
error.
User action : Submit an SPR, with the faulty mathematic formula. This is only a warning,
and in principle the result should be correct. If not, simplify your formula, or add parenthe-
sis to avoid possible ambiguities and try again. Eventually break your formula into several
consecutive ones.

10 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 138

W-MTH, Scratch operand remaining <integer>
SIC, Mathematic and logical expression analysis modules. This is an internal logic error.
An expression was successfully analyzed, but could not be evaluated because of an internal
error.
User action : Submit an SPR, with the faulty mathematic formula. This is only a warning,
and in principle the result should be correct. If not, simplify your formula, or add parenthe-
sis to avoid possible ambiguities and try again. Eventually break your formula into several
consecutive ones.

E-MTH, Too many operands
SIC, Mathematic and logical expression analysis modules. Formula is too complex, and
does not fit in the internal buffer.
User action : Simplify your formula, and try again. Use intermediate variables to break
your formula into several smaller pieces. If this is a serious limitation to you, submit an
SPR, and we will increase the buffer size.

E-MTH, Too many operands in function call
SIC, Mathematic and logical expression analysis modules. A function was called with the
wrong number of arguments.
User action : Correct the call

E-MTH, Unknown variable <String>
SIC, Mathematic and logical expression analysis modules. The parsing module was expect-
ing a variable.
User action : This is presumably due to a typing mistake. Correct your expression.

E-MTH, Unknown function <String>
SIC, Mathematic and logical expression analysis modules. The parsing module was expect-
ing a user defined function.
User action : This is presumably due to a typing mistake. Correct your expression.

E-MTH, Unknown logical or relational operator <String>
SIC, Mathematic and logical expression analysis modules. The parsing module was expect-
ing an operator.
User action : This is presumably due to a typing mistake. Correct your expression.

10.10 O through R

E-ON, Unknown argument <String>
SIC, ON command.
User action : See HELP ON.

E-PARSE, Implicit transposition not yet supported
SIC, Array dimension parser. The specified array subset is invalid, because it requires an
implicit transposition of the array variable.
User action : Read the section upon what array variables.

E-PARSE, Index <Integer> exceeds dimension <Integer> of <String>
SIC, Array dimension parser. The specified array subset is invalid, because the arrays size
is exceeded
User action : Correct your error.

10 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 139

E-PARSE, Variable <String> has only ’<Integer> dimensions
SIC, Array dimension parser. The specified array subset is invalid, because the dimension
does not exist in the array.
User action : Correct your (typing) error.

W-PAUSE, <^C> ignored, level too deep
SIC, monitor routine. The user pressed <^C> during a command execution, but the execu-
tion level is too high to allow a PAUSE to be delivered. The execution continues normally.
User action : None, unless a definite interruption is needed in which case the user might
consider typing <^Y>. . .

W-PAUSE, Error returned by aborted command ignored
SIC, monitor routine. A PAUSE was generated as the result of pressing <^C> during a
command execution, but the command completed with an error status. The <^C> takes
precedence over the error to avoid using the error recovery procedure. This message follows
a "I-PAUSE, Generated by pressing <^C>" message.
User action : As for any pause.

I-PAUSE, Generated by pressing <^C>
SIC, monitor routine. A PAUSE was generated as the result of pressing <^C> during a com-
mand execution. The previous command completed normally.
User action : Type any command you want. The interrupted execution level will be
restarted by command CONTINUE.

F-PAUSE, Level depth too large
SIC, monitor routine. An error occured, but no PAUSE could be delivered because the input
level is already too deep. The program aborts execution with a symbolic stack dump. This
error can (in principle) only occur if you are using a set of nested macros as error recovery
procedure, and with an invalid command in one of the macros...
User action : Correct error and restart the program. Avoid using such complex error
recovery systems.

F-PAUSE, Session is not interactive
SIC, monitor routine. An error occured, but no PAUSE could be delivered because the session
is a batch mode. The program aborts execution with a symbolic stack dump.
User action : correct the invalid command which caused the error and resubmit the job.

E-RECALL, Command line not found
SIC, RECALL command. No command line in the current stack buffer matches the abbre-
viation given.
User action : Use the TYPE command to see if the line you need does exist. This error may
be due to an incorrectly specified language field. See HELP RECALL.

E-RECALL, Non existent line in buffer
SIC, RECALL command. The requested line does not exist in the current stack buffer.
User action : Specify a valid command number.

10.11 S

E-SEXA, Invalid minute field
SIC, Sexagesimal decoding routine. The minute field is negative, or greater than 60.

10 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 140

User action : Correct typing errors.

E-SEXA, Invalid second field
SIC, Sexagesimal decoding routine. The minute field is negative, or greater than 60.
User action : Correct typing errors.

E-SEXA, Syntax error
SIC, Sexagesimal decoding routine. Valid syntaxes for sexagesimal arguments are +DD.DDD,
+DD:MM.MMM, and +DD:MM:SS.SSS.
User action : Correct typing errors.

W-SIC, Ambiguous keyword, choices are :
SIC, SIC command. The first argument is ambiguous.
User action : specify more characters.

W-SIC, Cannot change SIC\ language status
SIC, SIC command. Information message : language SIC\ cannot be removed from the
active scope.

W-SIC, Cannot set HELP mode <String>
SIC, SIC command. The user requested an invalid mode for HELP.
User action : specify a valid mode. Valid modes are PAGE and SCROLL.

W-SIC, Cannot set <String> language <String2>
SIC, SIC command. Information message : languages can only be ON or OFF. Library only
languages cannot be brought into the active scope.

E-SIC, Cannot set <String> switch <String2>
SIC, SIC command. The status <String2> does not exist for the switch <String>
User action : check for typing errors.

E-SIC, Command invalid in this context <string>
SIC, monitor routine. Command IF, ELSE and ENDIF can only be used in procedures.
User action : use a procedure.

F-SIC, Commands must be character*12
SIC, initialization routine. The command names are too long or too short. Execution
aborts.
User action : notify the programmer.

F-SIC, Demonstration period exhausted, Call your system manager

User action : ask your system manager to buy an authorized copy.

F-SIC, Duplicate language name
SIC, initialization routine. The language name is already used. Execution aborts.
User action : notify the programmer.

W-SIC, Edit mode requires an ANSII terminal
SIC, SIC command. Information message : the user requested the EDIT mode, but is not
logged on a ANSII (or compatible) video terminal. EDIT mode is left OFF.

10 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 141

I-SIC, Editor is <String>
SIC, SIC command. Information message specifying which text editor is used by command
EDIT.

I-SIC, HELP mode is <String>
SIC, SIC command. Information message specifying the HELP mode.

W-SIC, Incorrect nesting of IF blocks
SIC, monitor routine. Some IF blocks were not properly nested and are still opened when
a macro or loop terminates. The opened blocks are closed by sic.
User action : although this is only a warning, it may be wise to check the current macro
for possible error(s).

F-SIC, Initialization error number <Integer>
SIC, initialization routine. An undocumented initialization error occurred. Execution
aborts.
User action : notify the programmer, who should submit an SPR.

F-SIC, Internal logic error LIRE = -1
SIC, command reading routine. This is a fatal bug check.
User action : Submit an SPR, with as much information as you can (log file, program
listing, etc...).

E-SIC, Invalid nesting of loops and IF blocks
SIC, monitor routine. Some FOR loops were not properly nested and are still opened when
an IF block terminates.
User action : Check the current macro for error(s).

W-SIC, Invalid precision <string>
SIC, SIC command. The only supported precisions are SINGLE (or REAL) and DOUBLE.
Previous precision is kept.
User action : specify a valid precision.

F-SIC, Language initialization failure
SIC, initialization routine. This message is preceded by a more detailed account of the
problems. This is a fatal error, and the program execution aborts with a symbolic stack
dump.
User action : notify the programmer.

F-SIC, Programming error: recursive call to SIC
SIC, monitor routine. The programmer made a recursive call to sic. This is a fatal error,
and the program execution aborts with a symbolic stack dump.
User action : notify the programmer.

W-SIC, Session is not interactive, EDIT and MEMORY Off
SIC, monitor routine. Information message. This message appears at the beginning of the
program (usually when nobody is available to read it...).

F-SIC, SIC is not loaded
SIC, monitor routine. The program attempted to use sic before initializing the interpreter.
This is a programming error.
User action : notify the programmer.

10 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 142

I-SIC, <String> switch is <String2>
SIC, SIC command. Information message.

I-SIC, <String> language is <String>
SIC, SIC command. Information message.

W-SIC, Sub-process <String> is still active
SIC, exit routine. A sub-process has been created earlier by the SYSTEM command. The
sub-process is not deleted.
User action : You can attach to this sub-process at any time by the VMS command ATTACH,
or delete it by the VMS command STOP.

E-SIC, Too many IF blocks
SIC, monitor routine. You are attempting to nest IF blocks too deeply.
User action : Do not. Find another way to solve your problem.

F-SIC, Too many commands and options. This program is only
dimensioned for <Integer> user-defined commands.
SIC, initialization routine. The program has too many commands and options. Execution
aborts.
User action : notify the programmer, who may submit an SPR (even though this is no an
error in sic just a limitation).

F-SIC, Too many languages
SIC, initialization routine. The program has too many languages. Execution aborts.
User action : notify the programmer.

W-SIC, Undefined character expression <string>
Formatting routine. The specified string is not a valid character string. This message is
usually preceded by other ones that give additional information.
User action : Correct typing mistake(s)

W-SIC, You are using a demonstration version
SIC. The version of sic you are using is a demonstration version with a limited validity
period (usually 3 to 6 months). Contact the authors about a permanent licence (available
at no cost for academic institutions).
User action : Beware that the validity period will expire...

E-SYMBOL, Invalid symbol name <String>
SIC, SYMBOL routine. A symbol name must begin with an alphabetic uppercase character.
User action : use a valid name.

F-SYMBOL, SIC is not loaded
SIC, DEFINE SYMBOL routine. The program attempts to define a symbol before SIC has
been initialized. This is a programming error.
User action : notify the programmer.

E-SYMBOL, String too long, translation failed
SIC, monitor routine. The line buffer is too short to accomodate the symbol translation.
The command is not executed, and an error occurs.
User action : : If possible shorten your command or symbol translation. Eventually contact
the programmer.

10 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 143

E-SYMBOL, Symbol definition too long
SIC, SYMBOL command. The equivalence name is too long. The symbol is undefined.
User action : cut the definition in two symbols and use concatenation when translation is
required.

W-SYMBOL, Symbol name too long <String>
SIC, SYMBOL command. Symbol names must be shorter than 12 characters.
User action : use shorter symbol names.

W-SYMBOL, Symbol truncated to <String>
SIC, SYMBOL command. A symbol name contained more than 12 characters and has been
truncated.

E-SYMBOL, Too many symbols
SIC, SYMBOL routine. There are too many symbols, the new definition has not been added.
User action : delete unwanted symbols before adding a new one.

I-SYMBOL, Table is empty
SIC, SYMBOL command. Information message, there are no symbols defined.

I-SYMBOL, Table contains :
SIC, SYMBOL command. Information message, followed by the list of symbols and equiva-
lence strings.

W-SYMBOL, Undefined symbol <String>
SIC, SYMBOL command. The specified symbol is undefined.

E-SYSTEM, Sub-process cannot be activated
SIC, SYSTEM command with or without arguments. The sub-process could not be created
because of lack of system resources. The VMS error message follows this error.
User action : If the command had an argument, retry it without as you may connect to an
existing subprocess. If this fails, it is generally due to an exceeded quota of subprocesses. If
you have other subprocesses running, the SYSTEM command lists the current subprocesses
and prompts you to which one you want to attach. If none is available, the SYSTEM command
will return you an error.

E-SYSTEM, Sub-process <String> could not be attached
SIC, SYSTEM command without argument, or with option /PROCESS. The programs failed
to attach to an existing sub-process, previously created by the SIC\SYSTEM command, or by
another program. If the option /PROCESS was not present, the command will try to create
a new one.
User action : Check process name in case you used the /PROCESS option.

W-SYSTEM, More than <number> sub-processes active
SIC, SYSTEM command with or without arguments. You have reached the maximum num-
ber of sub-processes allowed within sic˙
User action : If the command had an argument, retry it without as you may connect to an
existing subprocess. If this fails, the SYSTEM command lists the current subprocesses and
prompts you to which one you want to attach. If none is available, the SYSTEM command
will return you an error.

10 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 144

E-SYSTEM, Sub-process cannot be created
SIC, SYSTEM command with or without arguments. The sub-process cannot be created,
usually because of lack of system resources. The VMS error message follows this error.
User action : If the command had an argument, retry it without as you may connect to an
existing subprocess. If this fails, it is generally due to an exceeded quota of subprocesses. If
you have other subprocesses running, the SYSTEM command lists the current subprocesses
and prompts you to which one you want to attach. If none is available, the SYSTEM command
will return you an error.

10.12 T

E-TYPE, Cannot open <String>
SIC, TYPE command. The specified file or macro could not be opened. This message is
followed by a more precise reason.
User action : check for typing errors.

E-TYPE, Error reading <String>
SIC, TYPE command. A read error occured during the typing of a file or macro. The TYPE
command aborts.
User action : most likely you are trying to type a binary file or something like this...
Otherwise, it is a hardware problem. Notify your system manager.

10.13 U through Z

E-VARIABLE, Internal error, no back pointer
SIC, DELETE /VARIABLE command. This is an internal logic error.
User action : Submit an SPR.

E-VARIABLE, Invalid variable name <String>
SIC, DEFINE LET /NEW or FOR commands. Variable names must be at most 15 characters
and begin with a letter.
User action : use a valid name.

E-VARIABLE, Program defined variables are protected
SIC, DELETE /VARIABLE command. You attempt to delete a variable that has been created
by program. This is not allowed.

F-VARIABLE, SIC is not loaded
Calling program. The program attempts to define variables before the interpreter has been
initialized. This is a programming error.
User action : notify the programmer.

E-VARIABLE, Too many variables
SIC, SIC, DEFINE LET /NEW or FOR commands. You attempted to define too many vari-
ables.
User action : Delete unused variables and retry. If this is not sufficient, submit an SPR,
and we will increase the buffer size.

E-VARIABLE, Variable <String> already exists
SIC, DEFINE or LET /NEW. The specified name is already a known variable.
User action : use a different name, or delete the variable before.

10 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 145

E-VARIABLE, Variable name too long
SIC, DEFINE LET /NEW or FOR commands. Variable names must be at most 15 characters.
User action : use a shorter name.

E-ZCRONGNEUGNEU, j’y arrive pas
Congratulations, you got a free bottle of champagne if. . .
you can reproduce the error.
User action : Contact the authors.

11 TASK DEMONSTRATION 146

11 Task demonstration

11.1 demo

EXAMPLE Demonstration program, mostly used for GILDAS tests
PRIMES Compute primes numbers (used for GILDAS tests)

11.2 EXAMPLE

EXAMPLE

This is a sample program doing nothing, but used to test GILDAS...

11.3 PRIMES

PRIMES

This is a sample program computing primes numbers up to an internal lim-
it, used to test GILDAS.

Index

ACCEPT, 15, 32
/ARRAY, 15, 32
/BINARY, 15, 32
/COLUMN, 15, 32
/FORMAT, 34
/LINE, 34
Excel, 34

ADJUST, 109
/BOUNDS, 112
/EPSILON, 111
/METHOD, 111
/PARAMETER, 112
/QUIET, 112
/START, 112
/STEP, 112
/WEIGHTS, 112
Example, 110

BEGIN, 35
BREAK, 18, 35
BUTTON, 99

CHARACTER, 107
COMPUTE, 35, 120

BTEST, 40
DATE, 37
DERIVATIVE, 40
DIMOF, 37
FFT, 37
FOURT, 38
GAG DATE, 38
GATHER, 38
HISTOGRAM, 38
INTEGRAL, 40
IS A SIC VAR, 39
LINES, 39
LOCATION, 39
RANKORDER, 40

CONTINUE, 18, 19, 41

DATETIME, 42
/FROM, 42
/TO, 43

DEFINE, 8, 44
/GLOBAL, 51
/LIKE, 51

/TRIM, 51
ALIAS, 44
CHARACTER, 44
COMMAND, 24, 45
DOUBLE, 45
FITS, 46
FUNCTION, 47
HEADER, 12, 47
IMAGE, 12, 48, 121
INTEGER, 49
LANGUAGE, 49
LOGICAL, 49
REAL, 49
STRUCTURE, 50
TABLE, 12, 50
UVTABLE, 13, 50

DELETE, 52
/SYMBOL, 8
/VARIABLE, 14

demo, 140
DIFF, 52

EDIT, 6, 52
ELSE, 17, 53
ELSE IF, 17
EMCEE, 113

/BEGIN, 115
/BOUNDS, 115
/LENGTH, 115
/PARAMETERS, 115
/ROOT NAME, 116
/START, 116
/STEP, 116
/WALKERS, 116
Caution, 113
Credits, 114
Example, 114

END, 53, 99
ENDIF, 17
ESHOW, 117

/BURN, 118
/SPLIT, 118
AUTOCORR, 117
CHAINS, 117
ERRORS, 117

147

INDEX 148

RESULTS, 117
TRIANGLES, 118

EXAMINE, 8, 15, 54
/FUNCTION, 9
/SAVE, 55

EXAMPLE, 140
EXECUTE, 53
EXIT, 18, 55

FILE, 107
FITS, 101

/BITS, 102
/STYLE, 103
FROM, 101
TO, 102

FOR, 16, 55
/IN, 56
/WHILE, 17, 57
Indexed, 56

GO, 99, 107
GUI Mode, 20
GUIΓE30FBUTTON, 20, 22
GUIΓE30FGO, 20, 22
GUIΓE30FMENU, 20
GUIΓE30FPANEL, 20, 22

/DETACH, 20

HEADER, 103
/TELESCOPE, 104

HELP, 4, 5, 57

IF, 17, 58
IMPORT, 58
INTEGER, 108

Language, 31, 98, 101, 107, 109
LET, 8, 14, 59

/CHOICE, 21, 61
/FILE, 22, 61
/FORMAT, 62
/FORMULA, 62
/INDEX, 21, 62
/LIKE, 11
/LOWER, 62
/NEW, 8, 62
/PROMPT, 21, 63
/RANGE, 21, 63
/REPLACE, 63

/RESIZE, 63
/SEXAGESIMAL, 64
/STATUS, 64
/UPPER, 64
/WHERE, 11, 64
Free Syntax, 60
GUI Widget, 60
Structure, 61

LOGICAL, 108

Main panel window, 20
MENU, 99
MESSAGE, 65
MFIT, 66

/EPSILON, 67
/METHOD, 67
/QUIET, 68
/START, 68
/STEP, 68

MODIFY, 68
MORE, 108

NEXT, 16, 18, 68

ON, 69
ERROR, 69

ON ERROR, 19

PANEL, 100
/DETACH, 20

PARSE, 69
PAUSE, 18, 19, 70
PRIMES, 140
PYTHON, 71

QUIT, 19, 72

REAL, 108
RECALL, 6, 72
RETURN, 19, 72

BASE, 19
ERROR, 19

RUN, 26, 29, 30, 104
/EDIT, 29

SAY, 15, 73
/FORMAT, 74
/NOADVANCE, 76

SIC, 23, 25, 76
/COLOR, 87

INDEX 149

APPEND, 23, 78
BEEP, 78
Command, 77
COPY, 23, 80
CPU, 78
Customize, 77
DATE, 78
DEBUG, 79
DELAY, 80
DELETE, 23, 81
DIRECTORY, 23, 24, 81
EDIT, 7, 81
ERROR, 81
EXPAND, 81
EXTENSION, 16, 82
FileSystem, 76
FIND, 23, 82
FLUSH, 82
GREP, 82
HELP, 82
INTEGER, 83
LANGUAGE, 83
LOCK, 83
LOGICAL, 24, 83
MACRO, 84
MEMORY, 84
MESSAGE, 84
Miscellaneous, 77
MKDIR, 23, 87
MODIFIED, 87
OUTPUT, 88
PARALLEL, 88
PARSE, 88
PRECISION, 8, 89
PRIORITY, 89
Procedure, 77
RANDOM SEED, 89
RENAME, 23, 90
SAVE, 90
SEARCH, 91
SYNTAX, 91
SYSTEM, 92
TIMER, 92
USER, 93
UVT VERSION, 93
VERIFY, 93
VERSION, 94

WAIT, 94
WHICH, 94
WINDOW, 94

SORT, 95
SPY, 30, 106
Sub-panels, 20
SUBMENU, 100
SUBMIT, 26, 29, 106

/EDIT, 29
SYMBOL, 7, 95
SYSTEM, 23, 24, 96

TASK\, 28
CHARACTER, 28
FILE, 28
INTEGER, 28
LOGICAL, 28
REAL, 28
VALUES, 28

TIMER, 96
TRANSPOSE, 106
TYPE, 16, 97

URI, 101

VALUES, 109

WAIT, 100
WRITE, 109

	Introduction
	The SIC Monitor
	Basic Features
	Syntax
	The Prompt
	The on-line HELP
	The Stack
	Line Editing Facility
	The Log File
	Symbols

	Variables and Expressions
	Definitions and Assignments
	Functions and Operators
	Vector Operations
	Implicit Loops
	Conditional Assignment
	Size casting
	GILDAS Images
	GILDAS Headers
	Structures
	Character Variables and Implicit Formatting
	Initializing variables from external files

	SIC as a programming language
	Procedures (or Command Files)
	Loops
	Structured Programming and Logical Expressions
	Execution Level
	Error Recovery

	The GUI (``Graphics-User-Interface'') Mode
	Detached menus
	Assigning variables in ``Window'' mode
	Actions and Buttons in ``Window'' mode
	Help file structure

	Interacting with the Operating System
	File Operations
	SYSTEM Command: Unix-like operating system

	Customizing
	Logical Names
	User Defined Commands
	Initialization File
	The SIC Command

	Running Tasks
	Window Mode
	Query Mode
	EDIT Mode
	Specifying the .init File
	Errors and Aborting
	Log Files
	Synchronizing Jobs
	Obtaining Explanations: HELP RUN TaskName Command

	SIC Programming Manual
	SIC Language Internal Help
	Language
	ACCEPT
	ACCEPT /ARRAY
	ACCEPT /BINARY
	ACCEPT /COLUMN
	ACCEPT /FORMAT
	ACCEPT /LINE
	ACCEPT Excel

	BEGIN
	BREAK
	COMPUTE
	COMPUTE DATE
	COMPUTE DIMOF
	COMPUTE FFT
	COMPUTE FOURT
	COMPUTE GATHER
	COMPUTE GAG_DATE
	COMPUTE HISTOGRAM
	COMPUTE IS_A_SIC_VAR
	COMPUTE LINES
	COMPUTE LOCATION
	COMPUTE RANKORDER
	COMPUTE INTEGRAL
	COMPUTE DERIVATIVE
	COMPUTE BTEST

	CONTINUE
	DATETIME
	DATETIME /FROM
	DATETIME /TO

	DEFINE
	DEFINE ALIAS
	DEFINE CHARACTER
	DEFINE COMMAND
	DEFINE DOUBLE
	DEFINE FITS
	DEFINE FUNCTION
	DEFINE HEADER
	DEFINE IMAGE
	DEFINE INTEGER
	DEFINE LANGUAGE
	DEFINE LOGICAL
	DEFINE REAL
	DEFINE STRUCTURE
	DEFINE TABLE
	DEFINE UVTABLE
	DEFINE /GLOBAL
	DEFINE /LIKE
	DEFINE /TRIM

	DELETE
	DIFF
	EDIT
	ELSE
	END
	EXECUTE
	EXAMINE
	EXAMINE /SAVE

	EXIT
	FOR
	FOR Indexed
	FOR /IN
	FOR /WHILE

	HELP
	IF
	IMPORT
	LET
	LET Free_Syntax
	LET GUI_Widget
	LET Structure
	LET /CHOICE
	LET /FILE
	LET /FORMAT
	LET /FORMULA
	LET /INDEX
	LET /LOWER
	LET /NEW
	LET /PROMPT
	LET /RANGE
	LET /REPLACE
	LET /RESIZE
	LET /SEXAGESIMAL
	LET /STATUS
	LET /UPPER
	LET /WHERE

	MESSAGE
	MFIT
	MFIT /EPSILON
	MFIT /METHOD
	MFIT /QUIET
	MFIT /START
	MFIT /STEP

	MODIFY
	NEXT
	ON
	ON ERROR

	PARSE
	PAUSE
	PYTHON
	QUIT
	RECALL
	RETURN
	SAY
	SAY /FORMAT
	SAY /NOADVANCE

	SIC
	SIC FileSystem
	SIC Procedure
	SIC Customize
	SIC Command
	SIC Miscellaneous
	SIC APPEND
	SIC BEEP
	SIC CPU
	SIC DATE
	SIC DEBUG
	SIC COPY
	SIC DELAY
	SIC DELETE
	SIC DIRECTORY
	SIC EDIT
	SIC ERROR
	SIC EXPAND
	SIC EXTENSION
	SIC FIND
	SIC FLUSH
	SIC GREP
	SIC HELP
	SIC INTEGER
	SIC LANGUAGE
	SIC LOCK
	SIC LOGICAL
	SIC MACRO
	SIC MEMORY
	SIC MESSAGE
	SIC /COLOR
	SIC MKDIR
	SIC MODIFIED
	SIC OUTPUT
	SIC PARALLEL
	SIC PARSE
	SIC PRECISION
	SIC PRIORITY
	SIC RANDOM_SEED
	SIC RENAME
	SIC SAVE
	SIC SEARCH
	SIC SYNTAX
	SIC SYSTEM
	SIC TIMER
	SIC USER
	SIC UVT_VERSION
	SIC VERIFY
	SIC VERSION
	SIC WAIT
	SIC WHICH
	SIC WINDOW

	SORT
	SYMBOL
	SYSTEM
	TIMER
	TYPE
	@
	@ ARGUMENTS

	GUI Language Internal Help
	Language
	BUTTON
	END
	GO
	MENU
	SUBMENU
	PANEL
	WAIT
	URI

	VECTOR Language Internal Help
	Language
	FITS
	FITS FROM
	FITS TO
	FITS /BITS
	FITS /STYLE

	HEADER
	HEADER /TELESCOPE

	RUN
	SPY
	SUBMIT
	TRANSPOSE

	TASK Language Internal Help
	Language
	CHARACTER
	FILE
	GO
	INTEGER
	LOGICAL
	MORE
	REAL
	VALUES
	WRITE

	ADJUST Language Internal Help
	Language
	ADJUST
	ADJUST Example
	ADJUST /EPSILON
	ADJUST /METHOD
	ADJUST /START
	ADJUST /STEP
	ADJUST /PARAMETER
	ADJUST /QUIET
	ADJUST /WEIGHTS
	ADJUST /BOUNDS

	EMCEE
	EMCEE Caution
	EMCEE Credits
	EMCEE Example
	EMCEE /BEGIN
	EMCEE /BOUNDS
	EMCEE /LENGTH
	EMCEE /PARAMETERS
	EMCEE /ROOT_NAME
	EMCEE /START
	EMCEE /STEP
	EMCEE /WALKERS

	ESHOW
	ESHOW AUTOCORR
	ESHOW CHAINS
	ESHOW ERRORS
	ESHOW RESULTS
	ESHOW TRIANGLES
	ESHOW /BURN
	ESHOW /SPLIT

	SIC Error Messages and Recovery Procedures
	A through C
	D
	E
	F
	G
	H
	I
	J trough L
	M
	O through R
	S
	T
	U through Z

	Task demonstration
	demo
	EXAMPLE
	PRIMES

