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Abstract

This memo describes the equations used in the NOEMA sensitivity estimator available in the online
sensitivity estimator (https://oms.iram.fr/tse/#noema), to be used for proposal preparation and in
the GILDAS/ASTRO program (so-called detailed estimator, independent of NOEMA call for proposals).
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NOEMA sensitivity estimator1. the interferometric point source sensitivity from first principles

1 The interferometric point source sensitivity from first princi-
ples

1.1 System temperature

The system temperature is a summary of the noise added by the system. This noise comes from 1) the
receiver and the optics, 2) the emission of the sky, and 3) the emission picked up by the secondary side
lobes of the telescope. It is usual to approximate it (in the T ?

a scale) with

Tsys =
(1 +Gim) exp {τsA}

Feff
[Feff Tatm (1− exp {−τsA}) + (1− Feff)Tcab + Trec] , (1)

whereGim is the receiver image gain, Feff the telescope forward efficiency, A = 1/ sin(elevation) the airmass,
τs the atmospheric opacity in the signal band, Tatm the mean physical atmospheric temperature, Tcab the
ambient temperature in the receiver cabine and Trec the noise equivalent temperature of the receiver and
the optics. All those parameters are easily measured, except τs, which depends on the amount of water
vapor in the atmosphere and which is estimated by complex atmospheric models.

The Tsys value is expressed so that all these terms are corrected for the attenuation by the atmosphere,
the coupling of the antenna to the sky, and the side-band rejection. In other words, the system temperature
is given in units that assume a perfect antenna (coupling equal to 1) located outside the atmosphere for
a single-sideband signal.

1.2 Power and sensitivity measured at the correlator output for one baseline

After the atmopheric calibration that converts the measurement scale from the correlator output (in
counts) to the T ?

a scale, the output of the correlator for one correlation is a power equivalent temperature
(in the Rayleigh-Jeans domain), which is sampled at a rate of 2dν, where dν is the frequency bandwidth
over which the power is measured. As explained in the previous section, the standard deviation of each
power measurement is given by the system temperature power (Tsys). During the integration time (∆t),
2dν∆t independent samples of the signal power are measured to ensure the Nyquist sampling of the signal
in the bandwidth dν. The signal power is averaged over these independent samples. The uncertainty on
the averaged signal power, named sensitivity (σK), is thus standard deviation of the average or

σK =
Tsys√

2 dν∆t
. (2)

1.3 Quantization efficiency

The Analog-to-Digical-Converter (ADC) will quantize the analog signal on a finite number of bits. This
can be seen as an additional source of noise that is modeled as a spectrometer efficiency (ηspec) and Eq. 2
becomes

σK =
Tsys

ηspec

√
2 dν∆t

. (3)

1.4 Collecting the measurements from all baselines

Assuming that the atmosphere and receiving system is independent of the pairs of antenna considered, the
previous equation is valid for any baseline of the interferometer. All the visibilities can be averaged into
a single visibility to define the point source signal. This implies that the standard deviation (sensitivity)
on the point source signal will be divided by the square root of the number of baselines, i.e., the number
of pairs of antennas, nant (nant − 1)/2, where nant is the number of antennas. The point source sensitivity
is then

σK =
Tsys

ηspec

√
nant (nant − 1) dν∆t

. (4)
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NOEMA sensitivity estimator 2. the interferometric extended source sensitivity

1.5 From the temperature power to the flux

For a point source, it is more natural to express the signal, and thus the sensitivity, in unit of flux. The
flux (F ) of a point source is linked to its brightness temperature T through

F = J sd
antT with J sd

ant =
2k
Aeff

, (5)

where k is the Boltzman constant, and Aeff is the effective area of the antenna (eq. 3-113 in Kraus , 1982),
and J sd

ant the conversion factor for a typical interferometer antenna. The effective area depends on the
observing wavelength when the surface rms accuracy becomes a significant fraction of the wavelength. For
NOEMA, the effective area is close to 1 at 3 mm but significantly lower than 1 at 1 mm.

Using the same conversion factor for the sensitivity, we yield

σJy =
J sd

ant Tsys

ηspec

√
nant (nant − 1) dν∆t

. (6)

1.6 Signal decorrelation

J sd
ant characterizes the antenna hardware, i.e. it assumes perfect atmospheric conditions or the use of

autocorrelations, as in single-dish measurements. In interferometric mode, the phase of the turbulent
atmosphere above each antenna of a given baseline has a random part that causes an additional “attenu-
ation” of the amplitude of the correlation. A point source of 1 Jy flux will appear as a source of ηatm Jy
flux if we only use the J sd

ant factor. This is called atmospheric decorrelation and it depends on the weather
during the observations.

However, the last calibration step of interferometric data is to measure a point source of known flux to
deduce the actual conversion factor, J int

ant, taking into account the atmospheric decorrelation that happens
during the observations. By definition of ηatm, we yield

J sd
ant = ηatm J int

ant. (7)

It can be shown that ηatm is related to the atmospheric rms phase noise (φrms) through

ηatm = e−
φ2
rms
2 . (8)

1.7 Noise vs signal

One subtlety is that the noise is unaffected by the atmospheric decorrelation, in contrast with the signal,
because noise is a random process as the turbulence phase noise.

But the conversion factor, J int
ant, is applied to the data that can contain signal as well as noise. Any

attempt to measure the noise rms on visibilities or imaged data will thus results in a standard deviation
larger than the one given in Eq. 6 by a factor ηatm. So when we estimate the noise level of an interferometer,
we need to take into account the interferometric conversion factor that depends on the typical weather
conditions (i.e., the atmospheric rms phase noise). This gives

σJy =
J int

ant Tsys

ηspec

√
nant (nant − 1) dν∆t

. (9)

2 The interferometric extended source sensitivity

2.1 Starting from the point source sensitivity

As a summary, the point source sensitivity for an interferometric measurement reads

σJy =
J int

ant Tsys

ηspec

√
nant (nant − 1) dν∆t

, (10)
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where σJy is the rms noise flux obtained by integration with an interferometer of nant identical antenna
during the ∆t integration time in a frequency resolution dν with a system temperature given by Tsys.
J int

ant is the conversion factor of a typical interferometer antenna taking into account the typical amount of
atmospheric decorrelation at the observed wavelength.

Equation 10 is true only when the source is unresolved, i.e., there is no effect of beam dilution.
In practice this is rarely the case because the interferometer tries to resolve the source. Thus, this
noise formula should be used with caution when preparing the observations. In practice, this formula
is useful when one wishes to compare the sensitivity of two different interferometer. Indeed, this point
source sensitivity is independent of the interferometer synthesized beam that depends on the details of
the observations and, in particular, the interferometer configuration and the completeness of the Earth
synthesis.

2.2 We yield the interferometric extended source sensitivity

The point source sensitivity is well adapted to unresolved sources because it directly delivers the estimation
of the flux of these sources. For extended sources, the point source sensitivity is expressed in unit of
Jy/Beam that is difficult to understand because it depends on the synthesized beam resolution in a non-
trivial way. When a source is resolved (extended compared to the expected synthesized beam), it is much
easier to think in temperature brightness. We thus convert back to a brightness temperature scale, but
we now do it at the synthesized beam resolution.

After calibration (including the calibration of the atmospheric decorrelation), imaging, and deconvolu-
tion (including a potential phase self-calibration), an interferometer mimick the observation by a telescope
of angular resolution equal to the synthesized beam. However, the notion of effective collecting surface is
ambiguous in this case. In order to generalize Eq. 5 to the final product of an interferometer, we use the
fact that the solid angle resolution (Ω) of a telescope of effective collecting surface Aeff is by definition
linked to the observing wavelength (λ) through

ΩAeff = λ2. (11)

We can thus generalize Eq. 5 as

F = JantT with Jant =
2kΩ
λ2

. (12)

On one hand, we have to use the solid angle of the primary beam Ωprim for J sd
ant and J int

ant. This yields

J int
ant =

J sd
ant

ηatm
=

2kΩprim

ηatm λ2
. (13)

On the other hand, we have to use the solid angle of the synthesized beam Ωsyn for the conversion factor
that we have to apply to the deconvolved product (J syn

ant )

J syn
ant =

2kΩsyn

λ2
. (14)

Note that we don’t use the decorrelation efficiency in the later equation. This is due to the fact that after
the data reduction, the deconvolved product should appear as if it was observed by a perfect antenna
whose response is exactly a Gaussian of angular size Ωsyn.

Combining Eq. 10, 13, and 14, we yield

σK =
Ωprim

Ωsyn

1
ηatm

Tsys

ηspec

√
nant (nant − 1) dν∆t

,=
θ2

prim

θmaj θmin

1
ηatm

Tsys

ηspec

√
nant (nant − 1) dν∆t

, (15)

where σK is the rms noise brightness, θprim the half primary beam width, and θmaj and θmin the half
beamwidth along the major and minor axes of the synthesized beam.
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NOEMA sensitivity estimator 3. in practice

Figure 1: Top: Summer (red) and Winter (blue) semester Tsys for different precipitable water vapor
(PWV) amount and for a source at zenith. The numbers indicate PWV values assumed in the computation.
Middle: Assumed forward effiencies in the computation. Bottom: Assumed receiver temperatures in
the computation.

2.3 Interpretation

Equation 15 clearly states that the sensitivity to extended sources depends on the dilution of the synthe-
sized beam in the primary beam. This is why this formulation of the sensitivity is well adapted to resolved
sources.

For a given interferometer, the primary beamwidth is a fixed quantity while the synthesized beam
is to first order proportional to the longest baseline in the current interferometer configuration. Hence,
doubling the largest baseline will multiply σK by a factor 4(= 22) for the same integration time or it will
multiply the integration time by a factor 16(= 24) in order to reach the same sensitivity. This just reflects
that while the interferometer tries to mimic a single-dish antenna of same diameter as the largest baseline,
all the antenna of the interferometer only fill a fraction of the total collecting area of the single-dish, this
fractions decreasing with a power of two as the baseline linearly increases.
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Figure 2: Top: Minimum and maximum Tsys obtained in the intermediate frequency bandwidth as a
function of the local oscillator frequency used in the tuning. Middle: Assumed forward effiencies in the
computation. Bottom: Assumed receiver temperatures in the computation.

3 In practice

3.1 Line vs continuum system temperature

In the online estimator (to be used for proposal preparation), the Tsys is interpolated in frequency and
airmass from tabulated values (see Fig. 1). The airmass is estimated using the maximum elevation of a
source at the chosen Declination. The values are different for summer and winter due to the different
atmospheric characteristics. Moreover, the chosen amount of precipitable water vapor depends on the
receiver band (in addition to the season) because the NOEMA operation team schedule the different
receiver bands according to the actual weather (high frequency bands are scheduled only during the best
weather conditions).

In the ASTRO detailed sensitivity estimator, the system temperature is computed using an atmospheric
model (ASTRO\ATMOSPHERE command) with ambient temperature and precipitable water amount as
input.

The Tsys can vary significantly over the large bandwitdh of the 2SB NOEMA receivers. Figure 2 shows
the minimum and maximum system temperature inside the IF bandwidth for all possible local oscillator
tunings. As a result, for continuum estimation, a frequency averaged Tsys is interpolated from a pre-
computed table. The relevant frequency in that case is the LO frequency of the tuning (see Fig. 3). The
averaging is done such as 1/ < Tsys >

2= 1/N
∑

1/T 2
sys.
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Figure 3: Top: Averaged “continuum” Tsys as a function of the local oscillator frequency used in the tuning.
Middle: Assumed forward effiencies in the computation. Bottom: Assumed receiver temperatures in
the computation.

This is not implemented in the ASTRO detailed estimator, due to the prohibitive computing cost of
the atmospheric model over the 2× 8 GHz.

3.2 The number of polarizations

All NOEMA antennas are equipped with dual polarization receivers. They measure the signal coming
from the pointed direction in two perpendicular polarizations in the same frequency range. For the current
generation of receiver (2006) and correlators, one or two polarizations are processed by the correlators,
depending on the project settings. We thus have to introduce the number of polarizations npol, which can
be set to 1 or 2 and insert it in the radiometer equation with

σJy =
J int

ant Tsys

ηspec

√
nant (nant − 1) dν npol ∆ton

. (16)

3.3 Actual computations

The sensitivity estimator computes the relationship between ∆t and σJy with

σJy =
J int

ant Tsys

ηspec

√
nant (nant − 1) dν npol ∆ton

, (17)
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where Tsys is interpolated in frequency and airmass from the table, and the other parameters are defined
by the observatory. It then computes the relationship between σK and σJy with

σK =
σJy

J syn
ant

with J syn
ant =

2π k θmajθmin

4 ln 2λ2
. (18)

4 Observing mode and elapsed telescope time

The goal of a time estimator is to find the elapsed telescope time (∆ttel) needed to obtain a given rms
noise, while a sensitivity estimator aims at finding the rms noise obtained when observing during ∆ttel.
The total integration time spent on-source ∆ton is shorter than the elapsed telescope time due to several
factors. As of Gildas Jul17 release, the input time of the sensitivity estimator is telescope time. The actual
on source time is then computed taking into account the following two points:

1. Instrumental setup time: At the beginning of an observing track a significant time (∆ttune ∼ 40
minutes according to history of observations) is spent in receiver tuning and calibration observations
before observing the actual astronomical target. This means that even for a very short ON source
time, a project cannot be shorter than ∆ttune. Also, for long projects observed in several (ntrack)
tracks the time spent for tuning and calibration is ntrack×∆ttune. We thus define the time spent for
observations (i.e. without instrumental setup) ∆tobs as:

∆tobs = ∆ttel − ntrack ×∆ttune (19)

The number of tracks is computed as ntrack = ∆ttel
∆ttrack+∆ttune

where ∆ttrack is the typical duration of
a track, which depends on the source declination:

• Sources above 0 deg are observed 8 hours at most,

• 8.2 hours for a declination of 0 deg (truncated to 8 hours),

• 6.5 hours for a declination of −10 deg,

• 3.9 hours for a declination of −20 deg,

• 0.0 hours for a declination of −30 deg.

• Sources below −30 deg can not be observed.

A linear interpolation with the declination is performed in the appropriate range between −30 deg
and 0 deg.
For short projects (∆ttel < ∆ttrack + ∆ttune), the number of tracks ntrack is set to 1. Otherwise, the
floating value of ntrack is used in the computation of ∆tobs. Since ∆ttune is constant whatever the
length of a track the use of a floating value for ntrack is somehow unnatural but it ensures that the
conversion from ∆ttel to ∆tobs is a monotonic function.

2. Observing efficiency: After the initial phase of instrumental setup, the observing mode does not
dedicate 100% of the time to the astronomical target. Part of the time is spent for calibration
(pointing, focus, atmospheric calibration,...) and to slew the telescopes between useful integrations.
The time actually spent on source ∆ton is defined as

∆ton = ∆tobs × ηtel (20)

where ηtel is the observing efficiency.

The exact computation depends on the observing mode. There are three main observation kinds that
are exclusive from each other.

Single-source, single-field observations where the telescope tracks a single source during the full
integration time. This mode is used when the signal-to-noise ratio is the limiting factor.
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Track-sharing, single-field observations where the telescope regularly cycles between a few close-by
sources. This mode is used when the sources are so bright that the limiting factor is the Earth
synthesis, not the signal-to-noise ratio.

Single-source mosaicking where the telescope regularly cycles between close-by pointings that usually
follows a hexagonal compact pattern whose side is λ/(2dprim), where dprim is the diameter of the
interferometer antennas. This modes is used to image sources wider than the primary beam field of
view.

These kinds can be combined with two others possibilities.

Dual band observations where the use of an additional dichroic allows the interferometer to observe
simultaneously at 3 and 1 mm.

Frequency cycling observations where the tuning frequency is regularly cycled between several pre-
defined values in order to, e.g., allow to observe a full atmospheric window in a single track.

These two additional possibilities can in principle be combined during the same observation.
In the following, we will work out the equations needed by the sensitivity estimator for each of these

observing modes.

4.1 Single-source, single-field observations

That’s the simplest case. The point source sensitivity in this case is

σJy =
J int

ant Tsys

ηspec

√
nant (nant − 1) dν npol ∆ton

(21)

where ∆ton is the time spent on-source. It is related to the total elapsed telescope time ∆ttel through:

∆ton =
∆ttel − ntrack ×∆ttune

ηtel
(22)

For single source projects, ηtel is estimated to be about 1.6. Note that the exact value will depend on several
parameters such as the number of calibrators and the distance between the source and the calibrator(s).

4.2 Track-sharing, single-field observations

In this case, the telescope time is equally divided between the nsou observed sources. This yields

σJy =
J int

ant Tsys

ηspec

√
nant (nant − 1) dν npol ∆ton

(23)

with ∆ton =
∆ttel − ntrack ×∆ttune

ηtel × nsou
(24)

Note that it is technically feasible to observe sources in track-sharing with different integration times. This
case is not implemented yet in the sensitivity estimator and the different sensitivities should be computed
independently. As for single source projects, ηtel is set to 1.6 in track-sharing mode.

4.3 Mosaicking

Mosaicking is a particular case of wide-field imaging: The user wishes to observe a given field of view
larger than the primary beam size with a sensitivity as uniform as possible.

10



NOEMA sensitivity estimator 4. observing mode and elapsed telescope time

The targeted field (which area is Amap, define by the user) can be divided in a number of independent
resolution elements or independent (primary) beams nbeam. We have:

nbeam =
Amap

Abeam
(25)

where Abeamis the area of the primary beam. It is linked to the telescope full width at half maximum (θ)
by

Abeam =
0.8π θ2

prim

4 ln(2)
, (26)

The 0.8 factor represents the truncation of the beam at 20% of its maximum, which is performed during
the imaging process.

Note that nbeam is not the number of pointed positions that are observed for the mosaic (npoint > nbeam,
see below).

For the sensitivity estimation we assume a standard sampling of targeted field and the on-source time
is equally divided between the independent primary beams nbeam in the targeted field of view. To first
order, we thus yield:

σJy =
J int

ant Tsys

ηspec

√
nant (nant − 1) dν npol ∆ton

(27)

with ∆ton =
∆ttel − ntrack ×∆ttune

ηtel × nbeam
(28)

There are several subtleties in this computation.

• Amap must be larger than 2 times Abeam (below this we advise to use the track sharing mode with
two independent fields).

• The processing (imaging and deconvolution) of a mosaic implies a division by the primary beam of
the interferometer. As the primary beam is to first order a Gaussian decreasing to zero, this implies
that the noise of the mosaic will vary over the field of view. In particular it increases sharply at the
edges of the field of view. In other words, Eq. 27 does not apply to the mosaic edges!

• The cycling of the pointings of the mosaic should ensure Nyquist sampling of the observed field of
view. This implies that there is an important redundancy between the pointings, contrary to track
sharing where the sources are supposed to be fully independent on the sky. For instance, when
mosaicking with a hexagonal compact pattern, each line of sight will be observed by 7 contiguous
pointings, except at the mosaic edges. It can thus been shown that the number of mosaic pointings,
npoint, is related to the number of independent elements through

npoint = nbeam

(
7
4

)2

, (29)

for a correctly sampled mosaic. Equation 27 is only valid inside a correctly sampled mosaic.

• The pointings of a mosaic must be observed in short time cycles to ensure that all pointings are
observed with similar weather conditions and that they share similar uv coverage. This minimizes
the shift-variant part of the interferometer wide-field imaging response. This calls for the shortest
possible integration time per pointing. However, the interferometer takes time to slew from one
pointing to the next one without integrating. As a result, the observing efficiency ηtel is degraded in
the cases of mosaics and we have another relationship between the elapsed telescope time and the
on-source time as:

∆ton =
∆ttel − ntracks ×∆ttune

ηtelηmos × nbeam
with ηmos =

∆t + ∆tslew

∆t
, (30)
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where ∆t is the integration time per pointing and ∆tslew is the time to slew between two consecutive
pointings. Having a large integration time per pointing compared to ∆tslew will decrease the mo-
saicking overhead. This requirement is in sharp contrast with the previous one, namely the need to
homogenize the interferometer wide-field response. The best compromise comes from two different
considerations.

1. The smallest integration time is set by the acquisition system (for instance, the maximum
achievable data rate). In pratice, we enforce that

∆tmin = 10 sec. (31)

2. The distance covered by a visibility in the uv-plane during an integration should always smaller
than the distance associated to tolerable aliasing (see Pety and Rodŕıguez-Fernández 2010 for
more details). This can be written as the following condition (Eq. C.3 in this article)

∆t
1s

<<
6900

θalias/θsyn
, (32)

where θalias is the map angular size, and θsyn the angular resolution. For a given angular
resolution, the interferometer minimum integration time corresponds to

∆tmin ≤
1
η

6 900
1 sec

√
θmajθmin

Amap
, (33)

where η is a ad-hoc integer set to 5 to ensure the condition defined in Eq. 32.

As the typical slew time between two pointings is ∆tslew = 11 sec, we yield that

1 ≤ ηmos ≤ 2.3 (34)

• If the time to cycle all the pointings, ∆tcycle, is set to 45 minutes, we yield that the maximum number
of pointing per track is

nmax
point/track =

∆tcycle

∆tmin + ∆tslew
= 130. (35)

• Finally, if the PI wishes to observe an area that will require more that 130 pointings per independent
track, the estimator will ask to either increase the requested elapsed telescope time or to decrease
the requested field-of-view area. The computation is done as follows.

1. The number of tracks is then computed as described in section 4.1.

2. The number of point per track is then npoint/track =
(

7
4

)2
nbeam

ntrack
. This value must be lower

than nmax
point/track.

In summary, the sensitivity of a Nyquist sampled mosaic is

σJy =
J int

ant Tsys

ηspec

√
nant (nant − 1) dν npol ∆ton

(36)

with ∆ton =
∆ttel − ntracks ×∆ttune

ηtelηmosnbeam
(37)
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4.4 Dual band observations

In order to observe two frequencies simultaneously, the beam has to be split into two beams with the help
of a dichroic. This adds some instrumental noise that we will encode as a higher value of the receiver noise
(i.e., in increasing Trec by for instance 10 K).

As the dichroic can be removed from the optical path when doing single band observations, this Trec

increases will only happen when the sensitivity estimation is done in dual band mode.

4.4.1 Python implementation

• Session parameters:

– tsys table line dbr = ? path to DBR specific Tsys table (line); may not be defined if not
needed by user inputs,

– tsys table cont dbr = ? path to DBR specific Tsys table (continuum); may not be defined
if not needed by user inputs.

• User inputs:

– dbr mode = True|False (False if not defined).

4.5 Frequency cycling observations

In frequency cycling, the tuning frequency is regularly cycled between nfreq predefined values inside the
same receiver RF band. This first imply that the on-source observing time must be split between the
different tuning of the frequency cycling. To do this, the user will have to give the percentage of the time
required per tuning. The sum of the percentage will have to be equal to 100%. By default, PMS will
divide equally the on-source time between the tunings, and the user will have the possibility to modify
this time repartition.

Frequency cycling also has two consequences on the observational efficiency.

1. The time to setup the tunings is increased with respect to standard observations by (nfreq−1)∗∆tfreq,
where ∆tfreq is typically XXX minutes.

2. After the setup phase, each cycle observed at a given frequency must be surrounded by gain calibra-
tion observations at the same frequency. This means that the observing efficiency is decreased: in
practice this is like doubling the number of calibrators, since each calibrator will have to be observed
at the 2 frequencies (the frequencies of the previous and of the next cycle, whatever the number of
cycles).

To take this into account, we first define the overhead factor as

Ω =
1
ηtel

. (38)

The overheads are now split into generic overheads, independent of the number of gain calibrators,
and the calibration overheads that is directly proportional to the number of observed gain calibrators.
This gives

Ω = Ωgen + ngaincal Ωgaincal Ωcycling. (39)

We will use Ωgen = 1.3 and Ωgaincal = 0.3, ndef
gaincal = 1 or 2 for detection or imaging, respectively,

and Ωcycling = 2 in frequency cycling mode, 1 otherwise.

When frequency cycling is combined with dual band observations, it is emphasized that both receiver
bands are affected by the efficiency loss of the frequency cycling even though one of the two bands could
not require frequency cycling at all.
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4.5.1 Python implementation

1. Tuning overheads:

• Session parameters:

– ttune = 40 min is renamed ttune main (already a mandatory parameter),
– ttune per freq cycle = xxx min (0 if not defined).

• User inputs:

– cycle nfreq = 1 or more (1 if not defined, if 1: not a frequency cycling estimation).

2. Observing efficiency:

• Session parameters:

– obseffref = 1.6 already defined is ignored if next parameters are defined,
– obseffgen = 1.3,
– obseffgaincal = 0.3,
– ngaincal detection = 1,
– ngaincal imaging = 2,
– ngain cycling = 2.

• User inputs:

– target kind = code detection|code imaging (detection if not defined i.e. same as be-
fore),

– cycle time frac = 0 to 1 (1 if not defined; if 1: not a frequency cycling estimation).
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