
Pointing & Imaging In Continuum

a code by Robert Zylka

Stefano Berta and Robert Zylka

October 31st, 2019

Acknowledgements: we thank A. Sievers and C. Kramer for their careful reading of this
document and their comments that improved its quality.

Contents

1 Welcome to PIIC! 5

1.1 This release . 5
1.2 The PIIC calibration files . 5
1.3 Setting up PIIC . 6
1.4 Starting PIIC . 6

1.4.1 The graphic interface . 6
1.4.2 Using external commands . 7

2 Blind use of the PIIC science pipeline 8

2.1 Weak compact sources . 8
2.2 Strong compact sources . 8
2.3 Deep fields . 8
2.4 Sunyaev-Zeldovich clusters . 9
2.5 Complex sources . 9

3 The science data-reduction pipeline 10

3.1 Principles and challenges of NIKA2 science data reduction 10
3.2 Setup . 11

3.2.1 The directory tree . 11
3.2.2 The list of scans . 12
3.2.3 The template script . 13
3.2.4 Define your source . 15
3.2.5 Specific cases . 17
3.2.6 Order of baseline correction . 18
3.2.7 Deep field and weak source options . 19
3.2.8 Measuring the noise r.m.s. 19
3.2.9 Additional parameters . 19
3.2.10 Correlating pixels . 20
3.2.11 Pixel size . 20
3.2.12 Exclude noisy timelines/maps . 20
3.2.13 Pausing . 20

3.3 Run it! . 21
3.4 Quick analysis of the 0-th iteration results . 22

3

3.4.1 The intensity maps . 24
3.4.2 The weight maps . 26
3.4.3 Compute r.m.s. maps . 26
3.4.4 Verify the source defined in the script . 26
3.4.5 Define, verify and optimize the noise polygon 27

3.5 Iterative mode . 29
3.5.1 Verify convergence . 29

4 Additional tips and suggestions 30

4.1 Non-azimuthal scans . 30
4.2 Noise of individual scans . 30
4.3 Cumulative signal and weights . 31

4.3.1 Linking rgw and effective exposure time . 32

5 The quick look monitor 33

5.1 On the fly data reduction at the telescope . 33
5.2 Quick Look . 33
5.3 Simple use of QL . 34
5.4 Advanced example: use the QL on a refined list . 35
5.5 Operations and results . 36
5.6 Products . 37

5.6.1 Save fits files . 38
5.7 Additional setup parameters . 38

4

Chapter 1

Welcome to PIIC!

The Pointing and Imaging In Continuum software is developed by Robert Zylka at IRAM. It is the
extension of the MOPSIC data reduction software (for MAMBO) to the case of NIKA2 data. It
consists of two main components: the so-called Quick Look monitor (briefly known also as QL); and
the data reduction pipeline aimed at producing science-graded products.

The core of PIIC is written in Fortran-90 and defines the commands to be used for the data reduc-
tion and analysis. The data reduction is carried out by scripts that combine the core commands to
perform all operations on the data. Plotting is also included in the main scripts and calls GREG/SIC
functions, which are part of the GILDAS distribution.

This tutorial is a brief hand-in-hand guide to accompany the users through PIIC operations. For

support, questions, doubts, suggestions, please do not hesitate to contact us, by writing

to piic@iram.fr.

1.1 This release

The first release of PIIC was on October 2019. The software is distributed via the GILDAS pages1.
It consists of a tarball file containing the main components of PIIC, an archive of the calibration files
(regularly updated), a Read-Me file, and this tutorial. To install PIIC, simply follow the instructions
found in the Read-Me file.

1.2 The PIIC calibration files

The PIIC calibration database (called DAFS) contains five different main types of files: calibration
files (CAL), defining the response of KIDs for flux calibration; deleted receiver pixels (DRP) files,
listing those KIDs that are know to be defective; frequency files (NKFR), listing the natural resonance
frequencies of all KIDs, for different sweeps2; receiver pixels positions (RPP), listing the position of

1www.iram.fr/~gildas/dist/index.html
2a sweep is practically a re-definition of KIDs resonance frequencies, performed regularly for each new season.

5

www.iram.fr/~gildas/dist/index.html

each KID in the field of view of NIKA2, for different sweeps; atmospheric conditions over all observing
runs (TAU files), containing the values of τ225GHz produced by the Observatory’s tau-meter.

After each observing pool, the PIIC support team processes calibration data and produces new
calibration files. The DAFS database is thus updated and a new version is available online. This
process might take some time, therefore there is a natural delay between science observations during
a pool and the release of the related DAFS.

At the moment, DAFS cover the period from June 2018 until today. Hence no PIIC calibration
files are available for scans taken before that date. An extension of the calibration database to all
science pools older than June 2018 is foreseen, but not planned yet. The date of a pre-2018/06 DAFS
release is not known.

1.3 Setting up PIIC

Install PIIC following the instructions provided in the release Read-Me file. PIIC needs GILDAS to
be installed first; see the GILDAS documentation and installation guidelines for further details. The
PIIC installation directory contains the following sub-directories:

dafs/

doc/

etc/

pro/

x86_64-generic/

where dafs/ contains the calibration files; doc/ includes the PIIC online documentation files; pro/
is the repository of all PIIC scripts; and x86_64-generic/ is the actual code installation folder.

1.4 Starting PIIC

Once the necessary environmental variables are set (see the INSTALL instructions file), start PIIC
by simply typing piic. The PIIC prompt will look like this:

PIIC>

1.4.1 The graphic interface

Plots, diagrams and image displays are visualised on a graphical window, following the GILDAS’
syntax. The QL and the science pipeline open the graphical device automatically. If other operations
need to be performed — without running the QL or pipeline — the user needs to explicitly open the
graphic device. This can be done either after starting the software, i.e. from the PIIC prompt, or at
the start itself. Three graphical examples follow.

In the PIIC prompt type either

6

dev i

dev i b

dev none

or while starting PIIC type:

piic dev i

piic dev i b

piic dev none

An “i” device is a (possibly interacive) graphical window with white background; if the user likes
a black background better, the chose “i b”; finally, if no device is wished, then use the option “none”.

If PIIC is operated remotely — e.g. with a low-speed net — or if the user is experienced enough
to trust all operations without the need for visual inspection, or if a huge workload is foreseen and
the user would like to avoid slowing down the processes by displaying many diagrams, then dev none

could be the option of choice.
It is very important to note that dev none is different from not specifying any device. If the

given PIIC script plots diagrams, it will stop in case no device is specified. On the other hand it
will redirect the plot to the none device if specified as such, thus proceeding with script operations
without stopping but also avoiding slow downs due to displaying graphics.

1.4.2 Using external commands

Just as in GILDAS, to use an external command (e.g. shell) from PIIC, simply type the name of the
command, preceded by the “$” sign, e.g. $ls.

7

Chapter 2

Blind use of the PIIC science pipeline

Running the PIIC data reduction is simple. It consists of simply editing a template script, setting it
properly for the given dataset, and run it. This short Chapter is a description of typical setups for
common types of targets, dedicated to those users who do not want to enter much in the details of
PIIC operations.

If, instead, the user would like to Chapter 3
After preparing PIIC and its environment as described in Section 3.2, edit the template script as

follows, for different cases.

2.1 Weak compact sources

Targets are considered compact if their size is ≤ 2.5 times the FWHM of the NIKA2/30m beam. In
this case, use the template script with its default settings (simply change filenames).

2.2 Strong compact sources

If the target is a bright source, expected to be detected at S/N>10, and visible on individual scans,
use the template script with its default settings, switching the weakSou option from yes to no.

2.3 Deep fields

If the target is a deep (blank) field, potentially including several weak sources, edit the template
scripts such that:

let souRmxAS 0

let souRmnAS 0

let blOrder 3

let deepField yes

let nIterModel 5

Don’t forget to define the r.m.s. polygon (polRMSeq) as described in Sect. 3.4.5).

8

2.4 Sunyaev-Zeldovich clusters

This is a special case of weak, extended sources, with moderate size. Keep the default setup, but
re-define the source a priori using the available knowledge about the target: its expected position
and size (see Sect. 3.2.4).

2.5 Complex sources

By these, are meant extended objects with complex geometries, possibly including diffuse emission.
Adopt the iterative mode, and do not use any a priori definition of the source. For a first, quick data
processing, edit the template script changing the default settings of the following poarameters:

let souRmxAS 0

let souRmnAS 0

let nIterModel 10 ! for example

Note that — at odds with the deep fields case — now blOrder=3 and deepField=no.

9

Chapter 3

The science data-reduction pipeline

NIKA2 observations are carried out with a raster-scan scheme. The field of view is moved on the
sky, scanning a region centered on the target, and covering an area around it large enough to allow
for a proper characterization of sky noise and instrumental effects.

The main issues to deal with, when reducing science maps, are instabilities, both due to the KIDs
behaviour itself and due to changes in elevation when scanning in directions other than azimuthal.

The science data reduction consists of a combination of PIIC commands and GREG/SIC (GILDAS)
macros. The combination of the two performs all needed operations and produces several diagnostic
diagrams.

The data reduction of a science data set is carried out using a single PIIC script, which calls all
needed procedures.

3.1 Principles and challenges of NIKA2 science data reduction

NIKA2 data include the signal of the sources, of the sky, of the system telescope+instrument and
noise. Sky signal and its low-frequency noise, as well as instrumental instabilities, should be removed
as much as possible before transforming the NIKA2 data into a science-quality product.

The essential steps are: flat field correction, correlation correction, sky subtraction, baseline sub-
traction, calibration, geometry association (given by the known RPPs), re-gridding on the final map.
During these operations, particular care should be taken in properly dealing with the emission of the
sources, in order to preserve it.

The sky signal and its variations are monitored and measured during the time-line of each KID
(kinetic inductance detector, also known as receiver pixel, RP). The correlation of each KID to all
others is studied and only the best correlating KIDs are used to compute the correlated noise to be
subtracted from each timeline.

When performing these measurements, the records of those KIDs observing sources at the given
time need to be excluded, in order to avoid compromising the measurement of the sky and instru-
mental properties. This is done by defining the sky area covered by sources (either as an ellipse or a
polygon, see Sects. 3.2.3 and 3.2.4).

If the position, size and shape of the sources is known, and the size is smaller than the NIKA2 field
of view (FoV), then it is possible to define the area to be avoided in the sky. If not, it is possible to

10

let PIIC define it on the basis of the signal to noise (S/N) ratio in the final map, during the iterative
process. Similarly, a pre-defined source will be improved on the basis of S/N.

The data reduction procedure is an iterative (and interactive) process. At each iteration, all data
reduction operations are repeated, using the improved source definition. To compute the S/N ratio,
the weight map produced at the previous iteration is rescaled into a noise map, by simply measuring
the r.m.s. of the signal map within a source-free polygon defined by the user. Thus the S/N ratio
is computed for each pixel, and pixels about a certain S/N threshold are identified. In this way a
source map is built and is subtracted from the data timeline at the next cycle of the loop.

The standard procedure can be thus summarized in two broad main steps:

1. in the so called 0th-iteration, PIIC performs all operations using the definition of source given
by the user (see Section 3.2.4. This can be either an ellipse, a polygon or no a-priori definition
of the source. The sky area covered by the source is excluded from the computation of baselines
to be subtracted from the data.

2. in the subsequent iterative mode, PIIC loops N times and performs again the data reduction,
improving the source definition on the basis of a S/N ratio thresholding method.

Between these two main steps, it is possible to use the results of the 0th iteration to improve and
optimize the setup of PIIC (e.g. the source definition itself), before proceeding to the proper iterative
mode.

3.2 Setup

Before running PIIC, we need to prepare the necessary files and environment:

• the directory and sub-directories tree in which PIIC will work

• the template data reduction script, that will be modified and renamed, depending on your
needs, taste and on the type of data to be dealt with;

• the list of scans to be processed (and combined together);

• the definition of the source on the sky (if needed), also included in the data reduction script;

• a polygon defining a source-free region of sky, to be used for the computation of the noise r.m.s.

3.2.1 The directory tree

First of all, let’s set up the working directory where PIIC will be used. For example, create the
directory my_data_red_with_piic/. Similarly to the QL case, PIIC needs a whole directory tree to
properly work. Prepare it in the following way:

cd

mkdir my_data_red_with_piic

cd my_data_red_with_piic/

11

mkdir png red stat

ln -s directory_containing_data imbfitsDir

Note that the data files in the data directory are not modified by the PIIC data reduction, nor is
anything going to be written in the data directory.

3.2.2 The list of scans

The list of scans is an ascii file containing the names of the imbfits files belonging to the dataset of
interest. It can be produced with any tool. Here an example is given to use PIIC to produce the list
of all array-2 scans belonging to observations of an hypotetical source called “Superantennae”:

cd

cd ql

cd imbfitsDir/

ls iram-30m*-2-* > ~/ql/all_ar2.LIST ! lists all Ar2 IMBFITS files

cd ..

piic

inlis all_ar2. ! load the list

sel type m ! select scans with observation type = map

find obje /wri ! find the names of all objects that were

! observed writes with scans in the list

! and writes one list of scans per objects

sel obje SUPERANTENNAE ! selects only scans of object SUPERANTENNAE

write inlist SUPERANTENNAE_a2.LIST ! write the list of selected scans on file

init inlist ! if needed, resets the starting list (in memory)

! the user will need to start from scratch,

! if they wish to produce a new list

In this way, one ascii list has been produced for array 2 containing the names of all Superantennae
imbfits files to be processed.

If the data imbfits files are all stored in the same directory, then the list can include only
filenames, and the imbfitsDir symbolic link point directly to that directory. If, instead, the data
are spread over several directories, the imbfitsDir points to the parent directory common to all
of them and the list file includes paths (starting from the common parent directory). In this case,
in order to comply to Fortran’s conventions, path+filenames need to be written in double quotes:
"path/imbf_filename.fits".

The name of the list file is to be inserted in the data reduction script (see Sect. 3.2.3). By default,
it is “yourSource_a”’nikaBand’.LIST. In the above example, for the target called “Superantennae”
and array 2, the default name is therefore Superantennae_a2.LIST.

Very importantly, the data belonging to each array need a different list of imbfits data files. In
fact, remember that the data of each scan are stored into three separate imbfits files, each belonging
to one single NIKA2 array.

12

If the user would like to process 1.3 mm data all together, i.e. would like to combine array-1 and
array-3 data together, then the list shall be labelled �a13 and shall include both array 1 and 3 scans
filenames. This means that the length of the arrays 1+3 imbfits list must be double the one of
array 1 or 2 or 3 individual lists.

3.2.3 The template script

PIIC comes with a template script for science data reduction. It is found in the pro/ folder under
the installation directory. This template script needs to be edited and optimized for the given science
case and the give kind of observations (target type, map size, scan strategy, etc).

This and the following Sections describe the key parameters of the script and give some guidelines
for chosing their optimal values. The users are encouraged to test different configurations and design
the best setup for their project.

This script assumes that all the needed calibration files have been already produced and are in
place in the PIIC dafs/ database.

Figure 3.1 shows an example of template script, as found in the pro/ folder.
As mentioned, the template script includes several parameters that can be optimized depending

on goal and on type of data/targets. Nevertheless, the default values of most parameters are already
a valuable start for almost any kind of data set and it is worth to perform a first test run leaving
most of them unchanged.

The most critical parameters, to which the user should take special care are:

• inList, inDir, ...: basic filenames;

• souRmxAs, souRmnAs, souPA, souRAoff souDECoff: size, position angle and possible offset
of an elliptical source, to be used during the 0-th iteration to exclude the area covered by the
source(s), during baseline computation;

• polSeq: in alternative to an elliptical source, it is possible to define a polygon that describes
the source, stored in a separate ascii file;

• blOrder: order of baseline correction (i.e. of the polynomial fit to the baseline) over individual
subscans;

• deepField: flag that indicates if we’re dealing with “deepfield” observations;

• nIterModel: the number of iterations to be performed;

• maskLevel: the S/N threshold to be used in iterative masking;

• polRMSeq: the polygon within which the r.m.s. of the map will be measured.

In order to better understand the meaning of these parameters, a very brief introduction to the
main operations performed during the PIIC NIKA2 data reduction is needed. A brief overview was
given in Sect. 3.1. More details are given in Section 3.3.

13

Figure 3.1: Example of data reduction script: default template plus few custom parameters.

14

3.2.4 Define your source

During the data reduction, sources need to be excluded from baseline computation and subtraction
for two reasons: 1) avoid the sources in the computation of sky (noise) removal; 2) do not cross the
sources while performing the baseline subtraction (which would alter the flux and the profile of the
sources).

At best, the data would have already been gone through the QL (see Chapter 5), so to have a first
initial guess of where the source lies, in order to be able to have a first guess of the region of sky it
covers. Note, however, that the QL does not combine maps together, hence if the source is faint, it
won’t be seen in the QL results yet.

A source can be defined as a circular/elliptical or a polygonal shape. Such source area is defined
on the final map, i.e. on sky coordinates, using GILDAS conventions: the (0,0) point is at the center
of the map; units are [arcsec]; x-axis values increase to the left and y-axis values increasing towards
the top, i.e. as in a RA-Dec map with East to the left and North up. The position angle is defined
starting from the y-axis, in the counter-clockwise direction. Figure 3.2 depicts these conventions.

Figure 3.2: Scheme of GILDAS graphical conventions. The pixels coordinates origin (0,0) is at the
center. Coordinates are defined in units of [arcsec] as in Equatorial coordinates (North is up, East is
to the left). Position angles are defined starting from the y-axis, in the counter-clockwise direction.
In this example, an ellipse centered at (15,40), with major and minor semi-axes equal to 15 and 32
[arcsec], and position angle of 30 degrees was defined.

When only a simple source is present in the maps, a simply circular/elliptical patch covering it
all could be the easy and correct way to proceed. The parameters souRmxAs and souRmnAs define
the major and minor axis of an ellipse defining the source on sky, in arcseconds. The position angle
of the major axis, with respect to the vertical axis of the image (North in Equatorial coordinates) is
given by souPA.

Although conceptually very simple, defining the source correctly might not be always trivial. Such
an ellipse should not be too big, in order to leave enough KIDs for a proper computation of sky noise.

15

This means that the ellipse should certainly be smaller than the array size. Note that — however
— this simple precaution might not be enough to produce a reliable science-quality final map, e.g.
if the final map is small or if the sky conditions were particularly unstable, or if KIDs were not well
tuned. It is therefore recommended to experiment with different ellipse sizes and geometries, if the
results look doubtful.

A sub-optimal definition of the source patch can generate spurious features in the final map. It
can produce “fake” sources, both positive and negative. If a negative spurious signal is produced
(e.g. a negative lobe), and if the iterative method is used, then adaptive masking of positive sources
based on the S/N ratio can gradually make it disappear. On the contrary, a positive spurious signal
is detected by the iterative process and recognized as a source. Hence it is much more difficult to
identify a positive spurious signal. If a positive spurious signal is produced by a improper source
definition, then it will persist on the final map, no matter how many iterations are employed. Finally
note, that even negative spurious sources can survive the iterative process and can end up on the
final product.

The overall message here is that — although conceptually simple — defining the source area to
be excluded from computations is a delicate process and its complex consequences should not be
underestimated.

A typical data reduction performs the 0-th iteration using a first-guess ellipse, for then verifying
on the product map if the initial choice was properly designed or if it needs to be modified, optimised,
or turned into a polygon. With an improved source definition, the reduction proceeds either directly
in the iterative mode, or repeating the 0-th step.

Keep in mind that — for example — a 10-iterations process on a typical (small-ish) map of a
Galactic cloud (SF region) can take approximately 24h to process. Hence it is better to spend some
more time defining the source region and optimize it, rather than finding out later that it was not
correctly defined and thus wasting a 24h time.

Polygonal source definition

A polygonal source definition follows the same principle as the ellipse, but is defined ad-hoc to cover
sources with irregular or complex shapes. It can be easily defined using the GILDAS command
polygon. The polygon needs to be written in an ascii file, listing in two columns the coordinates
(x,y) of each vertex of the polygon.

Importantly, the vertices sequence must be clockwise or counterclockwise, but not mixed. This
means that one should not mix the vertices, neither make intersections while defining the polygon,
because otherwise its “inside” and “outside” region might get inverted (see GILDAS tutorials).

Remember that, if multiple objects are present, it is necessary to define a single polygon covering
them all. This can make intersections difficult to avoid if the geometry is very complex. Just a little
patience.

Finally, for a proper use of elliptical source patches, the deepfield needs to be set to “no” (see
Sect. 3.2.7).

16

Offsetting the source patch

In some specific cases, it might be necessary to apply an offset to the ellipse that defines source. An
offset might also be relevant for a polygonal region, but one could imagine that polygons are defined
directly at the position of the source.

The parameters that define the offset of the ellipse with respect to the center of the final map
are called souRAoffAS and souDECoffAS. If all maps are centered at the same coordinates (i.e. all
scans where observed using the same scan center), then defining souRAoffAS and souDECoffAS is
sufficient.

On the contrary, if the scans to be combined have different scan centers, then PIIC does not know
a priori where the final map will be centered, and the central coordinates of the final map must be
given manually defining the parameter posSeq (in Equatorial coordinates). In this case, the offsets
are computed with respect to the position given by posSeq itself.

Summarizing, six parameters need to be used in order to entirely define the size, shape and position
of the elliptical source patch:

souRmxAS ! size of major half-axis in arcsec

souRmnAS ! size of minor half-axis in arcsec else

souPA ! source position angle on sky, in degrees (equatorial conventions)

posSeq ! equatorial coordinates of the center of the final image,

! in the format "H M S D AM AS"

souRAoffAS ! R.A. offset of the source relative to posSeq (in arcsec)

souDECoffAS ! Dec offset of the source relative to posSeq (in arcsec)

3.2.5 Specific cases

The details and tuning of the data reduction procedure depend on the kind of sources one is dealing
with. This is particularly true when it comes to properly define source areas.

Simple sources, i.e. with simple and compact geometry are simple to deal with. A typical example
is one single point-like source or a small extended source. In this case, a simple ellipse covering the
target is sufficient.

More complex objects (e.g. extended sources still smaller than the FOV of NIKA2) are more
difficult, but can still be dealt with without problems. A polygon defining an extended source
smaller than the FOV of NIKA2 can be built with success.

Note that the polygon or ellipse must be smaller than the FOV of NIKA2 and should allow some
pixels to be kept, in order to allow a proper computation of sky noise. The FOV of NIKA2 has a
redius of ∼200 [arcsec]. Hence the mask should be in general ≪200 [arcsec] in radius and undoubtely
not larger than 180 [arcsec] in radius (which anyway is already very big).

Faint sources or blank-field case

In the case of a blank field, several faint sources are present on the final map, but one does not neces-
sarily know a priori where they are. At the moment a multi-ellipse definition of several source is not

17

implemented in PIIC and, in order to manually exclude all sources from the baselines computation,
one should define a very complicated polygon covering all (mostly point-like) sources.

The straightforward PIIC approach is to adopt the iterative method, using no source patch at
all during the 0-th iteration. In order to do this, simply set the sizes of the ellipse souRmxAs and
souRmnAs to 0.0 [arcsec].

An unintended advantage of this choice is that — with no source defined on sky — PIIC avoids to
transform back and forth from sky coordinates to Nasmith and FOV coordinates the source patch,
thus sparing a lot of spherical trigonometry computations and speeding up the 0th iteration.

Very large objects

Very large, extended objects, larger than the NIKA2 field of view are an interesting, complicated
case.

In such case, the diffuse emission extended over an area larger than the NIKA2 FOV is suppressed
by definition, during sky noise subtraction. Only the small, more compact structures (e.g. cores and
filaments embedded in a big Galactic cloud) make it to the final map.

The small structures can be treated similarly to faint sources in a deep field (see Sect. 3.2.7), i.e.
simply letting PIIC to identify them on the basis of the S/N ratio on the final map. The easiest
approach is therefore to adopt the iterative processing, with no a priori source definition. In this
way, the flux of these structures is preserved and is not affected by filtering/baseline suppression. On
the other hand, obviously no measurement of diffuse emission is possible with this approach.

Negative signals

Compton scattering of CMB (Cosmic Microwave background) photons by free electrons in the plasma
of galaxy clusters produce the well known S�n�ev - Zel~doviq effect (SZ). The NIKA2 bands are
designed such that the signal in the 1.3 mm band is neutral and the 2 mm band detects the negative
distortion of the CMB due to the SZ effect.

Being negative, the SZ signal is not identified by the current PIIC S/N thresholding process (a new
implementation is currently on the make), hence the SZ source need to be defined as elliptical patches.
Although this might seem the easiest kind of targets to deal with, the combination of instabilities,
small map sizes and the choice of the ellipse and other PIIC parameters can cause the production of
spurious (negative/positive) signal, depending on the adopted settings. Some experimentation might
be needed in order o produce the best final product. Good luck!

3.2.6 Order of baseline correction

By default, the order of the baseline correction over single sub-scans (blOrder) is 2. This should
not be confused with btOrder, the order of baseline correction over the whole timeline, which is set
equal to 1 and should not be modified.

It is surely possible to experiment with larger values of blOrder, but keep in mind that enough
KIDs should be available to evaluate higher-order polynomials.

18

Note also that a higher order baseline fitting risks: a) to diverge at the edges; b) to fit not-
perfectly masked sources or sky variations or other smooth, faint features, and thus might easily
produce spurious signals; c) to remove real features of sources.

Vice versa, under particular conditions (e.g. small maps) a lower value of blOrder might give
better results.

3.2.7 Deep field and weak source options

In case of black fields or very faint, point-like, sources, it is useful to switch the deepField parameter
on. This activates the weakSou option, which tells PIIC that we are in presence of faint sources, i.e.
sources that potentially are below the 5σ level.

When this option is active, the elliptical source definition is ignored and baselines are computed
over the whole area, sources included. Therefore, for a proper use of elliptical source patches, the
deepField option has to be switched off.

Finally, note that the weakSou option can be activated independently of the deepField parameter.

3.2.8 Measuring the noise r.m.s.

During the iterative process, pixels are masked based on a S/N ratio threshold on the final map. PIIC
does not produce noise maps explicitly, but it provides weight maps. A noise map can be produced
by simply rescaling the weight map to the r.m.s. value of the final signal map. This implies that the
r.m.s. should be measured in order to determine the S/N of each pixel of the final map and apply
the thresholding on the iterative mode.

The r.m.s. of the signal map should be obviously measured in a region where there no sources are
present. To do this, a polygon needs to be defined in such an area and PIIC needs to be pointed to
that polygon via the parameter polRMSeq.

The chosen area should ideally have deep enough coverage to be representative of the goal of
the project or to allow excluding the presence of any source. In the case of large maps with very
inhomogeneous coverage, this choice can turn out to be quite critical in proper masking and in
avoiding the creation of spurious signals.

Also in this case — as for the source polygon definition — the vertices sequence must be clockwise
or counterclockwise, but not mixed (see Sect. 3.2.4 and GILDAS tutorials).

In Section 3.4.5 further details and instructions on how to define, verify and optimize the noise
polygon are presented.

Further details about how this was done and verified are given later.

3.2.9 Additional parameters

The main data reduction script calls other the script mapTPfurtherSets.piic, that define additional
parameters. The values of the parameters defined there are optimized and in principle it should not
be necessary to modify them.

If users feel like modifying this file, they need to copy them in the working directory and edit
them there. PIIC finds its scripts and components in the pro/ folder in the installation directory but

19

— following GILDAS’ conventions, — equivalent scripts, with the same name, found in the working
directory have priority.

3.2.10 Correlating pixels

By default the number of best correlating KIDs to be used when subtracting sky noise is nBest=16.
One can experiment using more (e.g. 32, 64, ...) to see if the end products of the data reduction
show a better source recovery.

3.2.11 Pixel size

Among the many other available parameters, let us mention the pixel size of the final map (parameter
eqPixSizeAS). By default, the pitch of the pixels of the final map are defined to be of 3 arcsec at 1
mm and 4 arcsec at 2 mm.

The FWHM of the beam is ∼ 11 arcsec at 1 mm and ∼17 arcsec at 2 mm. Therefore the chosen
pixel size is more than sufficient for Nyquist sampling. A finer pixel scale is not necessary and would
result into an enhanced noise.

3.2.12 Exclude noisy timelines/maps

PIIC checks the r.m.s. of timelines (signal as a function of time along the scan) of each KID. If such
the average r.m.s. over all KIDs is above a given threshold, the entire map will be rejected from the
dataset and will not be part of the final map.

In this way, scans taken in particularly unstable conditions can be discarded and will not degrade
the quality of the final product.

The parameters that define these thresholds are found in the main data reduction scripts and are
called:

let mxA1toiAvrms 180.0 ! [mJy/beam/smplRateHz], A1 map will be excluded

! if the TOI mean r.m.s. of all KIDs larger than this

let mxA2toiAvrms 48.0 ! [mJy/beam/smplRateHz], A2 map will be excluded

! if the TOI mean r.m.s. of all KIDs larger than this

let mxA3toiAvrms 132.0 ! [mJy/beam/smplRateHz], A3 map will be excluded

! if the TOI mean r.m.s. of all KIDs larger than this

These limits are set according to the statistics of NIKA2 data over the past years.
If users prefer not to exclude the noisy maps, they simply have to set these three thresholds to

very high values.

3.2.13 Pausing

By default, the data reduction script makes a pause after having completed the reduction of each
individual scan. If the number of scans is large, this implies a large number of breaks. In iterative

20

mode, the whole process is repeated nIterModel number of times, hence producing even a larger
number of pauses, which one should then manually resume by pressing “c”.

It is possible to change when and how often the script pauses, by adding the parameter nrPause
to the script or changing its value.

By default nrPause=5, which means that it stops at every frame and also at every other step after
reducing all individual frames. Setting it to zero, the scripts will not make any pause, if not one at
the very beginning after having loaded the list of scans to be processed. Other possible values of
nrPause are listed in the script.

At every pause, it is possible to change the value of the nrPause variable, as well as of any other
variable, if needed and if the user has enough experience to do that. While the script is idlying, it is
also possible to perform any operation, run other scripts, display the combined image (map), verify
if the polygon adopted for measuring the r.m.s. is positioned in a reliable, clean, well centered, etc,
and/or verify that the data reduction is proceeding correctly. It also possible to re-define the polygon
and use a new, better, version at the next iteration (or after pressing “c”).

If nrPause is set to 0 but one would like to make a pause and verify something or change the
values of some parameters, it is always possible to interrupt the procedure, pressing ctrl-c. The
script will pause at the first viable point, i.e. when the currently-running command ends, and it will
be then possible to manually perform the desired operations.

3.3 Run it!

After preparing the working environment, the data reduction script and associated data files, it is
now time to run the PIIC data reduction. Start PIIC in the working directory and run the script:

cd

cd my_data_red_with_piic/

piic dev i

@reduce_my_data_Ar1.piic

PIIC will load the list of scans and pause. Verify that everything is correct and continue by pressing
“c” and “enter”.

The data reduction operations start and PIIC will perform in sequence the following:

1. assign sky positions to each KID; perform main-beam flat-fielding; exclude known problematic
KIDs;

2. transform the KIDs signal into flux density and calibrate it to physical units [mJy/beam];

3. perform sky-noise (forward-beam) flat-fielding;

4. compute the correlation coefficient of each KID to all others; KIDs with bad correlation statis-
tics are rejected;

21

Figure 3.3: Average correlation coefficient of each receiver pixel (RP, i.e. KID) to all others, for array
1. In red are marked the RP id ranges belonging to NIKA2’s 8 acquisition boxes of which array 1
consists (see also red y-axis label).

5. analyse the time line of each KID and compute the r.m.s. of each KID’s signal along the
timeline (excluding the source positions, if requested); the most noisy KIDs are rejected;

6. subtract sky noise, using only the nBest KIDs best-correlating to each KID, and ignoring those
records covering the source in the sky (if defined a priori);

7. subtract baselines to remove instabilities that could not be dealt with during sky-noise sub-
traction;

8. apply extinction correction;

9. distribute the signal of all KIDs onto the final pixel grid, using the appropriate kernel linking
the NIKA2 PSF and KIDs size to the grid;

10. after the 0-th iteration (steps 1 to 9 above), the final map pixels with S/N ratio above the
requested threshold are identified and a source map is produced;

11. in the iterative mode, the source map is subtracted from the data timeline (after calibration)
and steps 2 to 8 are repeated nIterModel times.

Figures 3.3 to 3.6 show an example of the main steps for array 1, during a scan on the planet Uranus.

3.4 Quick analysis of the 0-th iteration results

After running the 0-th iteration, it is advisable to quickly verify that the initial assumptions were
commensurate to the target and the dataset, and if necessary modify them.

22

Figure 3.4: Time line of all KIDs of array 1, after the first baseline subtraction. The KIDs with the
noisiest time lines are rejected (see also Fig. 3.6). The more pronounced spikes in the timelines are
the bright source, crossed by the given KID at the given moment along the time line while scanning
on sky.

Figure 3.5: Array-1 scan maps of each individual KID, during the Uranus observation already shown
in Figs. 3.3 and 3.4. The ellipse defining the area covered by the source is depicted. Those KIDs
“seeing” the source (ellipse) at the given record along the timeline are not used to compute baselines
for that record.

23

Figure 3.6: Timeline r.m.s. of all KIDs of array 1 (see also Fig. 3.4). The solid blue horizontal line
marks the median value and the dot-dashed line marks a threshold set to nOfRPrms × the r.m.s.
(corresponding to nOfCCrms in Fig. 3.3). As in Fig. 3.3, in red are also marked the RP id ranges
belonging to the 8 electronic boxes of array 1.

The maps produced by PIIC are stored in the red/ directory. Here follow some example of basic
operations that can be performed on these maps.

PIIC produces three fits files at each operations: 1) the signal map; 2) the corresponding weights
map; 3) the mask based on S/N, to be used during the next iteration, in combination with the source
defined at the beginning. Typical filenames are:

Uranus_a1_0nwyyBrE60_60t1l3s60_60_0o0_0_0_10_50_medSb16_0_i2_0.fits

Uranus_a1_0nwyyBrE60_60t1l3s60_60_0o0_0_0_10_50_medSb16_0_i2_0_rgw.fits

Uranus_a1_0nwyyBrE60_60t1l3s60_60_0o0_0_0_10_50_medSb16_0_i2_0for1.fits

These filenames reflect the setup chosen in the data reduction script, i.e. the labels and numbers
found in the filenames are basically the values of some of the key parameters of the data reduction.
The rgw file contains the weights; the 0for1 file is the source map produced at the 0-th iteration
and to be used in the next iteration (called “iteration number 1”); the third file contains the signal
(intensity) map.

3.4.1 The intensity maps

The intensity map combines the signal that hit all KIDs of all scans, excepted those KIDs and scans
that were rejected during the data reduction process. In each pixel of the final grid (i.e. the final
image), the intensity is the weighted mean of the intensities of all KIDs that have “seen” that given
pixel ∑

i,j si,j × wi,j
∑

i,j wi,j

(3.1)

24

where si,j is the signal of the i-th KID of the j-th scan and wi,j its weight. By default, weights are
proportional to the inverse of r.m.s. squared.

The intensity of each KID is distributed on the final grid according to the beam, i.e. its contribution
to the intensity of each pixel of the grid implies a convolution with a proper kernel. The construction
of the final map in Equatorial coordinates from the KIDS timelines of all scans is performed using
the algorithm by Haslam (1973, Kleinheubacher Berichte, 16, 451), also described by Emerson et
al. (1979, A&A, 76, 92) and adopted in the MOPSIC data reduction software (Zylka, 1998, ITA
Heidelberg).

The WCS of the final maps is not based on any projection (e.g. TAN, Mercatore, or others). It is
simply in spherical coordinates. Then, of course, it is displayed on a flat screen. This kind of WCS
is called “Cartesian” in the header and in WCS jergon.

The top-left panel of Fig. 3.7 shows the 0-th iteration intensity map obtained for array 1 of our
example Uranus case.

Figure 3.7: Top-left: array 1 intensity maps of Uranus. Top-middle: source area defined as a circle
with radius 50 arcsec. Top-right: source definition with radius 120 arcsec. Botttom-left: 25%, 50%
and 75% coverage levels (black lines). Bottom-middle and right: definition of the r.m.s. polygon
(yellow line). See main text for details.

25

3.4.2 The weight maps

Along with the intensity map, the PIIC script produces the map of weights, labeled rgw (regular
grid weight). Its value is the denominator of Eq. 3.1. Each KID of each scan enters into rgw with a
different weight, which depends on electronic noise, KIDs instabilities, KIDs tuning, sky noise, etc.
Hence a possible proportionality of rgw to exposure time is not trivial and actually is distorted by
weighting.

In order to compute a quantity that is directly proportional to the effective exposure time per
pixel, one should in principle re-compute the terms (nominator and denominator) of Eq. 3.1 without
weighting. Note, nevertheless, that even in such case, the proportionality constant between rgw and
teff would be not straightforward to evaluate, because the contribution of each KID to the pixels of
the final grid is convolved with a kernel. See Section 4.3 for more on this subject.

3.4.3 Compute r.m.s. maps

As said earlier already, r.m.s. maps can be computed by rescaling weight maps to the r.m.s. of the
intensity map measured within a given area. This area is — for example — what has been previously
called “the r.m.s. polygon”. The PIIC syntax to do it manually is as follows:

read Superantennae_rgw.fits ! read the rgw map

init spik /all

calc ^0.5 ! take the sqrt of the rgw

pol my_polygon ! load the polygon in which to compute the r.m.s.

mean in ! compute the avg value of sqrt(rgw) within

! the polygon

div ’MEANVAL’ ! divide the current array by this MEANVAL

store ! store it in the "BACKUP" array

read Superantennae.fits ! read the intensity map

rms in ! compute the r.m.s. within the polygon

take ! recovers what was stored before (i.e. the

! BACKUP array = sqrt(rgw)/sqrt(rgw(polygon))

div ’rmsDEV’ ! this is now sqrt(rgw/rgw(polygon))/rms(polygon)

calc ^-1 ! invert and obtain

! rms(polygon)/sqrt(rgw/rgw(polygon))

! which is nothing else than the r.m.s. map,

! our final result!

write Superantennae_rms.fits ! save on file

3.4.4 Verify the source defined in the script

We can now verify if the definition of the source on sky, that we have adopted during the 0-th
iteration was appropriate, e.g. if it includes the whole object, or if some features are missed.

In the Uranus example, initially a circular source with radius of 50 [arcsec] was used. Proceed as
follows in PIIC:

26

read Uranus.fits

mask in 50 50 0 ! mask all pixels within a ellipse with

! maj/min axes = 50 arcsec and PA=0 deg,

! centered at (0,0)

! [this specific case could also be simply written as

! mask in 50]

plot sca lin -200 800

The top-middle panel of Fig. 3.7 shows the results: a 50 arcsec radius is too small for this bright
object; the first diffraction ring and the signature of the tetrapod is missed. We can let PIIC “detect”
it on the basis of the S/N ratio during the iterative mode, or we can enlarge the circle to 120 [arcsec]
(top-right panel of the same Figure).

For more complex sources and polygonal geometries, the principle is similar, but one needs to load
the source polygon and use mask in to verify the area actually covered.

3.4.5 Define, verify and optimize the noise polygon

The polygon, within which the r.m.s. of the map is to be measured, should be defined and given
to PIIC as input. Ideally one would like to define it on the final map, in order to exclude possible
sources from it, using the maximum possible S/N ratio.

For this reason, we said in Sect. 3.2.4 that ideally one would have already processed the scans
with the QL, in order to have a first rough idea of where to position the r.m.s. polygon. The QL
does not combine scans, therefore it can be preferable to use the results of the 0-th iteration (full
data reduction, combining all scans) instead.

Produce the r.m.s. polygon

The polygon file is simply an ascii file, consisting of two columns: x and y of the polygon vertices
(see the GREG commands help). The coordinates are in “world” units [arcsec], following GILDAS
conventions (see Fig. 3.2 and related text). Knowing these rules, users can define the polygon using
their favorite piece of software. Nevertheless, we find convenient to use PIIC/GREG themselves,
since here the coordinates definition is completely transparent.

Display the final map with PIIC , and use the GREG command polygon in interactive mode
(just type “polygon”. Click on the image where you wish to define vertices, taking care to proceed
in clockwise or counterclockwise direction, and without crossing paths. The coordinates are written
on screen. Exit pressing “e” and save the coordinates on file or using the command write pol

filename.pol.
To define the polygon in a more refined way, one might like to help the hand by visualizing the

N% coverage levels on the map. In this way, one could define the polygon within an area of high
coverage (or within a desired coverage range). All this, translated in PIIC, looks like the following:

read Superantennae.fits ! reads the intensity map

plot sca lin -1 5 ! plots it with linear scale within the

! indicated range

27

store ! saves it in a backup array

read Superantennae_rgw.fits ! load the weights map

store rgw ! store it in the rgw array

put ! transfer the rgw data from PIIC to GILDAS

levels 90 ! define the 90% level

rgmap /percent 1 ! draw 90% coverage contours

levels 95 ! 95%

rgmap /percent 1

... ! etc

polygon my_polygon /plot ! load and plot polygon

polygon ! use pol command in interactive mode to

! define a new one in the desired area

The three bottom panels of Fig. 3.7 show the definition of the the polygon as described here.

Verify the polygon

Let’s verify that the area we have defined to be inside the polygon is effectively interpreted also
by GILDAS to be inside the polygon. There different reasons for which this might not happen, for
example if paths were crossed while defining vertices (easy to happen if complex geometriess are
involved), the direction was inverted, etc.

The procedure is simple: load the image; display the image; load and display the polygon; mask
all pixels within the polygon; re-plot the image and visually verify that GILDAS actually masked
those pixels that we meant to mask.

The same, translated into PIIC/GILDAS commands is:

read Superantennae.fits

plot sca lin -1 5

polygon my_polygon /plot

mask in

plot sca lin -1 5

Optimize the polygon a posteriori

The basic principle on which we base our polygon verification is that the r.m.s. of the S/N map, in
an empty area (i.e. without sources) in presence of white noise only, must be equal to 1.0.

In order to verify this, we need to produce the S/N map out of the intensity and weights map
produced by PIIC (see Sects. 3.4.1 and 3.4.2).

The weight maps is proportional to the inverse the r.m.s. squared. In order to find the correct
normalization and transform it into a r.m.s. map, it is necessary to measure the average value of the
weight maps and the r.m.s. of the intensity map within the same area (polygon) free of sources. The
rest is simple arithmetics.

PIIC includes a convenient command, in this case, which allows to directly compute the S/N map
without the need to manually perform all operations one by one. In PIIC syntax, generating the
S/N map translates in:

28

read Superantennae_rgw.fits

store rgw ! save it in the rgw array

read Superantennae.fits

polygon my_polygon

statistics in

calculate snr

plot sca lin -1 5

write Superantennae_snr.fits

The S/N map has been produced, plotted and saved. Now it is time to measure its r.m.s. in different
areas (polygons), defined where there are no sources. In this way we verify if the r.m.s. value is on
average close to unity. If so, then the r.m.s. polygon is defined correctly. If not, the polygon needs
to be re-defined. Let’s do it in PIIC:

read Superantennae_snr.fits

plot sca lin -1 5

pol ! yes, all commands can be abbreviated

! define a polygon somewhere appropriate

! press ‘‘e’’to exit

statistics in

pol ! do the same at different locations, several times

statistics in ! do the same at different locations, several times

3.5 Iterative mode

After the optimization of the script and associated files has been completed, it is time to proceed
with the second main step of the data reduction, i.e. the iterative loop. This time, PIIC iterates on
all data reduction operations (see Sect. 3.3), each time modifying the source map based on the S/N
ratio. The negative features due to poor masking gradually disappear.

Depending on the kind of targets observed, the number of iterations needed to reach “convergence”
might vary significantly. For faint and simple sources, 4-5 iterations can be enough; for extended
emission and complex geometries, more than 10 iteration might be necessary.

3.5.1 Verify convergence

In order to verify if nIterModel iterations are sufficient to the project’s goal, or if more are needed,
one should simply compare the final intensity maps obtained with N iterations to those obtained
with nIterModel−1 iterations only.

To do this, simply take the difference of the two. Generally speaking, if the average difference
across the field is a small fraction of percent of the typical sources’ flux, then nIterModel iterations
are sufficient. Typical acceptance values are of the order of few percent. Each science project has
indeed different needs and the users are invited to define their own “convergence” metrics.

29

Chapter 4

Additional tips and suggestions

In this short Chapter we include some material for further thoughts: possible hints to improve the
observing strategy; and some extra data analysis tips for the most advanced users.

4.1 Non-azimuthal scans

Scanning on the sky in a direction different from azimuth (e.g. with an angle in Equatorial coor-
dinates) produces a quasi-periodic saw-like instability, of the order of 10’s of [Jy] or more, mostly
due to the change of airmass (a.m.) during the scan. This behaviour is not exactly periodic and
the saw teeth are actually not linear. Such drifts do not correlate perfectly because each KID reacts
differently to the movement of the telescope. Therefore we cannot fully correct this behaviour, but
we can only obtain an approximative “cleaning”.

The FOV of NIKA2 is large and therefore different KIDs (e.g. one pixel at the low-el side and
one at the high-el side of the array) have different airmass and cover different a.m. ranges during
the scan. Therefore the saw-like quasi periodic instability is different for each KID.

Moreover the NIKA2 array(s) rotate(s) on sky as time goes by and as the scan is performed.
Hence the saw-like “trajectory” (in noise space) is NOT linear (the saw teeth are not linear), but is
slightly curved. The consequence of this curvature is that a linear sky-noise fitting approximation
can cause over-/under-subtraction of instabilities, thus producing spurious negative signals on one
side and spurious positive signals on the other side of the “tangent point” to the curve, where the
linear fit is pivoted.

Using an iterative procedure (see, e.g., Sect. 3.1), source masking is adapted and optimized.
By doing this, the negative signal is avoided and corrected, but the fake positive signal cannot be
removed and will stay until the end. Hence a good guess of masking at the very beginning is critical,
in order to avoid producing spurious effects on the final map.

4.2 Noise of individual scans

In addition to the final products and the png images of intermediate diagnostics, the PIIC data
reduction script also saves numerous files containing data statistics, as measured during the data

30

reduction flow and at the end of it. These data files are stored in the directory stat/.
One quantity of special interest is the noise of the individual scans before and after applying the

atmospheric opacity correction. This can be plotted using the GREG script plRMS.greg, included
in the pro/ folder under the PIIC installation directory. Proceed as follows:

@plrms Superantennae_..._ECend.stat ! [continue when it pauses]

One example obtained with a large dataset of more than 100 scans in Fig. 4.1 for Array 1.
In green is depicted the noise of the scans, before applying the opacity correction (and after sky-
noise subtraction). It is flat, denoting how the instrumental noise kept constant during the whole
observations and across different runs. In red the noise after opacity corrections is plotted. The
behaviour of noise now reflects the sky conditions, with peaks for those scans observed in poor
conditions.

Figure 4.1: Array 1 noise of individual scans during observations. Green points depict the noise
before applying the tau-correction. Red dots are the noise after the opacity correction. In the right
panel, elevation and opacity information are plotted as grey and black symbols, respectively (see
right-hand y-axes).

4.3 Cumulative signal and weights

For some project and science cases , it might be of interest to build — in addition to final maps
containing all scans in the dataset — partial, cumulative maps. Given a list of M scans, partial
cumulative intensity maps are obtained combining the first two, then three, then four, and so on
scans of the list, up to M (which corresponds to the final complete map). Similarly, the associated
cumulative weights can be produced.

We name these partial-depth maps cumulative rgw (regular grid weights) and rgs (regular grid
signal). In practice, they represent the denominator and the nominator of Eq. 3.1, respectively.

31

Writing the “cumulative” rgs and rgw for each scan is switched on by setting the parameter
wrCumMaps to “yes”. This should also be added in the data reduction script, after the call to the
mapTPfurtherSets.piic script.

For each iteration, the script writes the cumulative rgs and �rgw for each scan in the red/ directory,
obtained combining all scans in the list up the given one. This obviously can easily sum up to a lot
of disk space, if many scans are used and several iterations are needed.

The intensity map — in units of [mJy/beam] — corresponding to the m-th rgs is computed from
as follows:

read Superantennae_i_rgw.fits

calc extre ! shows map min/max values

< ’0.3*abs(rgMn)’ ! (for example, the limit should be ~0.1 to 0.3 of abs(min)

store rgw

read Superantennae_i_rgs.fits

div rgw

4.3.1 Linking rgw and effective exposure time

It would be interesting to compute the effective exposure time per pixel, or at least a quantity
proportional to it. As said before (see Sect. 3.4.2) the current rgw is not a correct representation
of effective time because it is weighted. Moreover the kernel convolution performed by distributing
(in Fourier space) the signal of each KID onto the final grid, makes the proportionality constant not
easy to define analytically.

The first issue can be solved by performing an alternative data reduction, which avoids weighting.
The resulting intensity and r.m.s. maps will not be correct, but the rgw will be a proper description
of the effective exposure time per pixel, modulo a scaling factor.

The second issue can be solved by performing a naive re-gridding that uses a box-convolution
instead of re-distributing the signal of each KID adopting the real kernel. The result would then be
used only to compute the scaling factor, and for no other science-related purpose.

These solutions are not part of the standard pipeline and therefore not included in the current
PIIC release. Constructive discussions about this and other ideas of how to improve the

data analysis tools are very welcome.

32

Chapter 5

The quick look monitor

PIIC includes scripts for quick data reduction. They can be useful to the science user to check — for
example — under which conditions the observations were done (e.g. pointing, tracking, etc.). These
scripts adopt different names, depending on purpose. On-the-fly data reduction at the telescope,
processing new data as they are produced by NIKA2, is called monitor. Quick off-line (i.e. not
during the data flow, e.g. at home) data reduction is called quick look (QL). The name “quick look
monitor” can also be found.

The setup of the QL is similar to the default setup of the science pipeline, i.e. it is optimized to
process centered, compact sources.

5.1 On the fly data reduction at the telescope

Usually the on-the-fly data reduction at the telescope is activated by the astronomer on duty (AOD).
In case not, prepare the needed directory tree as follows:

cd

mkdir ql

cd ql

mkdir dat plAr1 plAr2 plAr3 redAr1 redAr2 redAr3

ln -s directory_containing_data imbfitsDir

Then run the monitor in one terminal, typing:

piic @monitor1

for NIKA2 array 1 (first 1 mm array). Similarly, do the same in other terminals for Arrays 2 and 3,
if desired, by simply using monitor2 and monitor3.

5.2 Quick Look

The quick look analysis (QL) is the off-line version of the PIIC monitor. By “off-line” it is intended
not on-the-fly as the data are produced and stored on disk at the telescope. It exists in two different
incarnations:

33

• work on one scan at a time;

• work on all scans taken from a user-generated list.

In the first case the QL scripts for the three different arrays are called:

qlAr1

qlAr2

qlAr3

In the second case, they are called:

qlAr1list

qlAr2list

qlAr3list

To use the QL, setup on your local disk a directory tree organized as for the monitor (see Sect.
5.1).

5.3 Simple use of QL

To run the QL scripts on one single scan, follow this simple example:

@qlAr1 scanname

and similarly for arrays 2 and 3. For example:

@qlAr1 20150627s40

@qlAr2 20150627s40

@qlAr3 20150627s40

To make use of the QL for lists, first create a list of all scans to be examined and then run the
script. The list shall be called ar1.LIST, ar2.LIST or ar3.LIST, and shall contain the imbfits

1

filenames (the IRAM NIKA2 fits files provided to the users after pool observations, stored in the
imbfitsDir/ defined before) without path.

For example, to run QL on all array-1 scans present in the imbfitsDir repository, follow this
simple example:

cd

cd ql

cd imbfitsDir/

ls iram-30m*-1-* > ~/ql/ar1.LIST

cd ..

piic

@qlAr1list

1
imbfits means IRAM Multi-Beam fits files; it is the standard file format of IRAM/30m and NIKA2 data.

34

5.4 Advanced example: use the QL on a refined list

In some cases, the user might need to run the QL on restricted list of scans, for example those
belonging only to the observations of a specific target. Such a list can be prepared using any of
your favorite tools. One option is to use GILDAS or PIIC to select scans on the basis of different
parameters (e.g. observation type) and/or on the basis of the observed object (see also Sect. 3.2.2).
The list should contain only the imbfits filenames, without path, for a given array.

For example, using PIIC, the list of all array-2 scans belonging to observations of an hypotetical
source called “Superantennae” can be produced in the following way:

cd

cd ql

cd imbfitsDir/

ls iram-30m*-2-* > ~/ql/all_ar2.LIST ! lists all Ar2 IMBFITS files

cd ..

piic

inlis all_ar2. ! load the list

sel type m ! select scans with observation type = map

find obje /wri ! find the names of all objects that were

! observed writes with scans in the list

! and writes one list of scans per objects

sel obje SUPERANTENNAE ! selects only scans of object SUPERANTENNAE

write inlist SUPERANTENNAE_a2.LIST ! write the list of selected scans on file

init inlist ! if needed, resets the starting list (in memory)

! the user will need to start from scratch,

! if they wish to produce a new list

In this way, one ascii list has been produced for array 2 containing the names of all Superantennae
imbfits files to be processed by the QL. Do the same for arrays 1 and 3. The QL script accepts only
lists with names ar1.LIST, ar2.LIST or ar3.list. Rename your list accordingly, before starting
the QL, for example:

cp SUPERANTENNAE_a2.LIST ar2.LIST

Note that selecting scans is not strictly necessary: one can run the QL on all the scans of a given
data set (see Sect. 5.3).

Run QL on all your favorite scans. Note that if the monitor is running at the same time, QL might
interfere with it. To avoid interferences, the monitor and the QL should run in different working
directories.

35

5.5 Operations and results

As it runs, the QL (or monitor) produces three different diagrams, that are shown in sequence in
two different graphic devices. The same diagrams are also saved as PNG files.

First of all, the QL shows the timeline of all KIDs (detector pixels, see left panel of Fig. 5.1) The
timeline of each KID is plotted as a line of different color in units of signal [mJy/beam] vs. LST
[s]. The many lines overimpose to each other. The low-frequency modulation is due to variations of
sky signal (e.g. due to intrinsic changes of sky conditions or due to changes of airmass during the
scan). Possible short-time peaks represent the signal of bright sources at the time when the given
KID crosses them on sky.

As the data reduction proceeds, the QL computes and subtracts baselines from the data timeline of
each KID (see also Chapter 3) and produces a flattened timeline, in which the sky and instrumental
“noise” is removed and only the source signal is left (right panel of Fig. 5.1).

After subtracting baselines and calibrating the data, the QL shows four different diagrams, as in
Fig. 5.2. Depending on which type of observations have been carried out, different diagrams might
be displayed. As describing all of them here would be unfeasible, we invite the users to explore the
possibilities of the QL.

The case shown in Fig. 5.2 is a pointing scan on source MWC349. The four panels show: the
tracking accuracy of the telescope in Azimuth and Elevation; the reduced map of the scan, including
information about the beam size, source flux, and pointing corrections; the noise r.m.s. in the field
of view and the position of the KIDs in Nasmyth coordinates; the Gaussian fit in the Azimuth and
Elevation axes of the source profile, aimed at determining pointing offsets.

Figure 5.1: Example of timeline of a pointing scan on the source MWC349 (array 2). Left: Raw
timeline; right baseline-subtracted timeline. Each colored line belongs to a different KID (detector
pixel) of NIKA2. See main text for details.

The QL performs a simplified data reduction. Generally speaking, the results (even if written in
fits files) are to be used for display and checking purposes only.

Nevertheless, using the QL with the correct values of the atmospheric opacity τ for simple point-
like, well-centered sources, the result does not differ too much from a proper thorough data reduction.

36

Figure 5.2: Result of QL analysis of a pointing scan on the source MWC349 (array 2). Top-left:
tracking accuracy in Azimuth (white) and Elevation (cyan), i.e. difference between commanded
and effective coordinates as a function of time. Bottom-left: reduced map of the scan, including
information about the beam size (FWHM), the peak flux, the main beam flux, the aperture flux
(extrtacted within the aperture marked on the map), and pointing corrections (in yellow). Top-
right: noise r.m.s. in the field of view and position of the KIDs in Nasmyth coordinates. Three
histograms are also shown, representing a cut across the FOV at lines 0 (white), and ±100 (yellow
and cyan). Bottom-right: Gaussian fit in the Azimuth and Elevation axes of the source profile, aimed
at determining pointing offsets.

The same does not hold if the source is not centered or is complex.
Note, finally, that the QL does not combine scans together; it reduces each scan separately.

5.6 Products

The QL script produces many PNG images, that are stored in the plAr#/ directories.
It also produces many data files, that are stored in the dat/ directory. It is important to keep

37

in mind that the .dat files are appended. This means that each time the QL is run, the .dat files
become bigger and bigger. One might want to check their size from time to time.

5.6.1 Save fits files

The QL scripts, in their standard configuration, do not produce any FITS files of the quickly reduced
data. If a fits version of the result maps is needed, it is possible to override the standard setup of
the QL scripts.

In order to do this, copy into the working directory, from the pro/ folder in the installation
directory, the scripts that define the QL parameters.

Generally speaking, PIIC finds the scripts in the pro/ folder. Following GILDAS’ conventions, if
a script with the same name is in the working directory, then this has the priority. Therefore it is
sufficient to copy the scripts of interest in the working directory and modify them there, in order to
use a custom setup instead of the default setup, without the need to modify the installed version.

For the three arrays, these scripts are called:

qlDefsAr1.mopsic for the individual-scan version

qlDefsAr2.mopsic

qlDefsAr3.mopsic

qlDefsAr1list.mopsic for the list version

qlDefsAr2list.mopsic

qlDefsAr3list.mopsic

Edit the variable writeMap and change it from “no” to “yes”:

let writeMap no -> yes

Now the QL will write FITS files of the reduced data (maps) and will store them in the directory
redAr*/.

5.7 Additional setup parameters

It is possible to optimize the value of some parameters in QL setup, to obtain a higher-quality QL
products (both for simple sources and also more complex targets), or speed up the processing, etc.

The order of the baseline fit can be changed (e.g. from 1 to 3). This change needs to be taken with
care, because — for example — if not enough data pixels (or not good enough data) are available, it
might produce more damage than improvement. Nevertheless — assuming that you know what you
are doing — the parameter to be changed is called blOrderOrig.

For increasing speed, just know that the parameter nBest defines how many best-correlating KIDs
are considered in the computation of base-line corrections. A value of 32 does a good job; a value of
0 (zero) does a bad job, but is 10 time faster (because searching the nBest best correlating KIDs is
not requested anymore).

In order to prevent the QL to stop after having processed each scan, set the parameter usePause
to no.

38

	Welcome to PIIC!
	This release
	The PIIC calibration files
	Setting up PIIC
	Starting PIIC
	The graphic interface
	Using external commands

	Blind use of the PIIC science pipeline
	Weak compact sources
	Strong compact sources
	Deep fields
	Sunyaev-Zeldovich clusters
	Complex sources

	The science data-reduction pipeline
	Principles and challenges of NIKA2 science data reduction
	Setup
	The directory tree
	The list of scans
	The template script
	Define your source
	Specific cases
	Order of baseline correction
	Deep field and weak source options
	Measuring the noise r.m.s.
	Additional parameters
	Correlating pixels
	Pixel size
	Exclude noisy timelines/maps
	Pausing

	Run it!
	Quick analysis of the 0-th iteration results
	The intensity maps
	The weight maps
	Compute r.m.s. maps
	Verify the source defined in the script
	Define, verify and optimize the noise polygon

	Iterative mode
	Verify convergence

	Additional tips and suggestions
	Non-azimuthal scans
	Noise of individual scans
	Cumulative signal and weights
	Linking rgw and effective exposure time

	The quick look monitor
	On the fly data reduction at the telescope
	Quick Look
	Simple use of QL
	Advanced example: use the QL on a refined list
	Operations and results
	Products
	Save fits files

	Additional setup parameters

