Bands at the 30m MRT, sizes of pixels and arrays for various FOVs, Power load, NEP, NET, and NEFD from the background
S.Leclercq - Nov 2009, update Mar 2010
The numbered variables are the free parameters for the optical and photometric calculations
The grey font is used for comments or optional calculations given for information but not used in the optical and photometric calculations
Diffraction size on the 30m, number of beam and pixels per FOV
FOV calculations not used in the rest of the document:
Speed of light [m/s] c 3E+08 input data
Boltzman constant [J/K] k 1.38E-23 Planck RJ approx P[W]=2AWkTDn/l^2 HPBW angle ["] 15 (Half Power Beam Width)
Planck constant [J*s] h 6.63E-34 Flux F[10^26Jy]=P/(ADn)=2WkT/l^2 Pixel size [mm] 2 (defines the optics of the instrument, not the other way round !)
Nb of pix per HPBW 2
M1 Diameter [m] 30 FOV on detector 40 mm FOV angle ['] 7
1) Wavelength [mm] 3.25 2.05 1.25 0.87 result HPBW size [mm] 4
Frequency [GHz] n 92 146 240 345 Nb of HPBW in FOV 10.0 Nb of HPBW in FOV 28.9
Diffraction Pattern FWHM [mrad] 112 70 43 30 FOV angle ['] 2.4 FOV on detector 115.7 mm
Diffraction Pattern FWHM ["] 23 15 9 6 FOV on detector 4.56 inches
Forward efficiency x (empiric fit) 98% 96% 92% 87% <= fit on the best measures with ABCD receivers
Beam efficiency b (Ruze) 78% 72% 58% 39% Ruze (surface deformations): b = 1.2*e0*exp(-((4s*Rs/l)^2))
2) Fraction of unvigneted pupil diameter 99%
Telescope effective area [m^2] A 688
All the pixels in this document are considered as bare (without horns), except for the MAMBO2 sheet
3) Pixel angular size u [Fl] 1 0.5
Pixel solid angle in the sky [sr] W 1.2E-08 4.8E-09 1.8E-09 8.6E-10 3.0E-09 1.2E-09 4.5E-10 2.2E-10
Throughput AW [mm^2sr] 8.30 3.30 1.23 0.59 2.07 0.83 0.31 0.15
AW/l^2 = (p/4)u^2 0.79 0.79 0.79 0.79 0.20 0.20 0.20 0.20
Pixel efficiency on diffraction spot z 40% 37% 29% 20% 13% 12% 9% 6% <= approximation from gaussian fit on b
3.14 3.14 3.14 3.14 Telescope focal F [m] 292
FOV diameter ['] Number pixels in FOV discs, rounded at the upper group of 10s FOV diameter at the telescope focus [cm]
1 10 20 40 80 Total: 30 60 150 300 Total: 8.5
2 30 60 150 300 90 210 570 1170 17.0
3 50 120 320 660 190 480 1270 2620 25.5
4 90 210 570 1170 2040 340 840 2250 4650 8080 34.0
5 130 330 880 1820 520 1310 3520 7260 42.5 3/4 0.87 band
6 190 480 1270 2620 750 1890 5060 10450 18150 51.0 3000 9950
7 260 640 1730 3560 6190 1020 2560 6890 14220 24690 59.5 4000 13450
8 340 840 2250 4650 1340 3350 9000 18570 68.0
9 430 1060 2850 5880 1690 4240 11390 23500 76.4
10 520 1310 3520 7260 12610 2080 5230 14060 29010 50380 84.9
11 630 1590 4260 8780 2520 6330 17010 35100 93.4
12 750 1890 5060 10450 3000 7530 20240 41780 101.9
My simple ATM model
Based on fits on ATM from Astro in Gildas, for the 50-400GHz range, with the error constraint |Dt/t|<4% at 100kHz resolution in the bands and 1MHz resolution in the atmospheric "walls",
built with Tatm = 275 K, Psea_level = 1015 mb, Altitude = Pico Veleta (Tau~P and Tau~T^3 => wv has the strongest effect in the range of possible P and T,
so my model ignore dependence in T and P for simplicity)
Continuum
Reference frequency nc [GHz] 250
225
Water Vapor slope ac [1/mmwv] 0.071 0.058
Dry continnum at nc bc 0.005 0.004
Kinetic lines
Central frequency no [GHz] 58.2 60.2 118.7 183.3 325.1 368.5 380.2
Width ns [GHz] 2.5 2 1 2.96 3.47 0.56 3.49
Central tau to 3.2 11.5 9.4 2.2 2 1 19
Water power pl (0 = O2 line, 1 = H2O line) 0 0 0 1 1 0 1
Gaussians fitting groups of close-packeted lines
Central frequency no [GHz] 58.1 62 65.3 440
Width ns [GHz] 2.5 2.1 3.1 80
Central tau to 17.6 20.2 0.2 0.13
Water power pl (0 = O2 line, 1 = H2O line) 0 0 0 1
Simple photometry calculations (reminder about unit prefixes "a" = atto = 10^-18; m/a = 1/p)
Remarks 1: the RJ temperatures below are defined so that when used in the RJ approximation formula of the brightness, the result = the unapproximated Planck law
Remarks 2: the Power formula below assumes constant T (brightness) and h (overall efficiency) in the integration over the bandwidth => correct @ <2 % error in the mm atmospheric windows for T>2K
Remarks 3: the NET and NEFD are given for a choosen observing mode and for one pixel, their value for a standard size (beam of HPBW) is given at the end of the sheet
(Blockage M2 & quadurpod, leackage) 97% <= apparently not included in x since it has values > 98%...
4) Cabin optics transmission (M>2) 95% <= transmission of M1 and M2 included in x, isn't it ?
5) Cryostat 300K transmission 95% 88% <= total warm parts
6) Cryostat 77K transmission 86%
7) Cryostat 4K transmission 81%
8) Band pass filter transmission 95% 66% <= total cold parts
9) Detector absorbtion efficiency 90% 52% <= total optical chain
Global optical efficiency h 51% 50% 48% 45% <= total including Feff
Maximum bandwidth Dn_M defined by atmospheric transmission >75% everywhere in the band for the water vapour chosen below:
10) Bandwidht [GHz] Dn 40 40 100 20 wv [mm] : 7 5 4 2 1
Band pass min freq [GHz] 72 126 190 335 Dn_M : 46 47 50 119 25
Band pass max freq [GHz] 112 166 290 355 Dn_M central n [GHz] : 92 146.5 222 249.5 344.5
Band pass min wave [mm] 4.1 2.4 1.58 0.90 central l [mm] : 3.26 2.05 1.35 1.20 0.87
Band pass max wave [mm] 2.7 1.8 1.03 0.85
Bandwidth [mm] 1.48 0.57 0.54 0.05
11) Degree of polarization 0  (0 = 2 polar = unpolarized, 1 = 1 polar)
Polarization parameter p 1
Quantic effect of photons bunching on a surface ~ partial coherence factor (C) = covariance of the fluctuations of intensity (= integral of integral of beam pattern for a point source) = 1 / (available number of modes on the surface).
  Asymptotes: (1) monomode or coherent or extended source: C = 1 ; (2) multimode and incoherent point source: C ~= l^2/AW = 4/(pu^2) if u>3, C ~= exp(-(0.6*u^((u+2)/(u+1))) if 0<u<3 (empricial approx by me). C can't be >1.
12) Spatial coherance factor C 1.0 0.5 1.3 1.0 0.8 5.1 (<= multimode pt source approximations for u<3 and u>3 given for information)
13) Observing mode useful time ratio 80%   (e.g. 80% for OTF, 45% for On-Off)
Observing mode efficiency g 1.12   <= includes the "reference+source" *2^0.5 factor and "frequency to time" /2^0.5 factors which cancel each other
NEP to NET = T/P(T) = Q/exp(-t) ; NEP to NEFD = F/P(F) = J/exp(-t) (Q and J are defined such that they don't depend on the atmospheric conditions)
   Q = pl^2/(2kAWhDn) [K/pW] 2.3 2.3 1.0 5.1 9.0 9.2 3.8 20.3
   J = px/(AhzDn) [Jy/pW] 17 19 10 70 55 60 30 220
T/F: (Q/J)(x/z) = (l^2/2kW) = D^2/2ku^2 [K/Jy] 0.32 0.32 0.32 1.27 1.27 1.27
 x/z 2.46 2.61 3.15 4.38 7.72 8.21 9.89 13.76
Atmosphere
14) Atmosphere  temperature (Ta) [K] 275
Black body occupation number at n 62 39 23 16
Brightness for frequencies [fW/m^2/Hz/sr] 0.7 1.8 4.8 9.7
(RJ approx brightness [fW/m^2/Hz/sr]) 0.7 1.8 4.9 10.0
Black body RJ temperature T [K] 273 272 269 267
15) Elevation [deg] 60
Airmass 1.15
16) Precipitable water vapor (wv) [mm] 1
Opacity tau meter (225GHz) 0.06   <= from IRAM Spain weather page (http://www.iram.es/IRAMES/weather.html), after Nov 16 correction; old was for Atacama  ==> 0.05
Opacity tau meter (225GHz) 0.06   <= from the continuum part only (lines negligible at 225Ghz) of my simplified ATM model
  Opacity components for each band:
Atm continuum only 0.010 0.026 0.070 0.145
Atm O2 kinetic lines 0.025 0.008 0.002 0.001
Atm H2O kinetic lines 0.000 0.003 0.004 0.058
Atm O2 gaussian bunch 0.000 0.000 0.000 0.000
Atm H2O gaussian bunch 0.000 0.000 0.000 0.000
Atm total t (including airmass) 0.04 0.04 0.09 0.235
Emissivity 4% 4% 8% 21%
Spectral radiance of atmosphere [fW/m^2/Hz/sr] 0.03 0.08 0.40 2.04
Atmos emission T RJ [K] T 11 11 23 56
Power [pW] P=(2AWh/p)kTDn/l^2 4.9 5.0 23.5 11.0 1.2 1.2 5.9 2.8
NEPp = (2hnP)^0.5 [aW/Hz^0.5] 25 31 87 71 12 16 43 35
NEPb = P(pC/Dn)^0.5 [aW/Hz^0.5] 25 25 74 78 6 6 19 19
NEP 35 40 114 105 14 17 47 40
NETp = gNEPpQ/exp(-t) [mK*s^0.5] 0.06 0.08 0.10 0.51 0.13 0.17 0.20 1.02
NETb = gNEPbQ/exp(-t) [mK*s^0.5] 0.06 0.07 0.09 0.56 0.06 0.07 0.09 0.56
NET 0.09 0.11 0.13 0.76 0.14 0.18 0.22 1.16
NEFDp = gNEPpJ/exp(-t) [mJy*s^0.5] 0.5 0.7 1.0 7.0 0.8 1.1 1.6 11.4
NEFDb = gNEPbJ/exp(-t) [mJy*s^0.5] 0.5 0.6 0.9 7.7 0.4 0.4 0.7 6.3
NEFD 0.7 0.9 1.3 10.4 0.9 1.2 1.7 13.0
Spillover
Temperature of environment behind M1 [K] 275
Emissivity 2% 4% 8% 13%
Spectral radiance of behind M1 [fW/m^2/Hz/sr] 0.02 0.07 0.38 1.27
T RJ [K] 5.7 10.9 21.5 34.9
Power [pW] P=(2AWh/p)kTDn/l^2 2.6 4.9 24.4 7.9 0.6 1.2 6.1 2.0
NEPp = (2hnP)^0.5 [aW/Hz^0.5] 18 31 88 60 9 15 44 30
NEPb = P(pC/Dn)^0.5 [aW/Hz^0.5] 13 25 77 56 3 6 19 14
NEP 22 40 117 82 9 17 48 33
NETp = gNEPpQ/exp(-t) [mK*s^0.5] 0.05 0.08 0.10 0.43 0.09 0.17 0.21 0.86
NETb = gNEPbQ/exp(-t) [mK*s^0.5] 0.03 0.07 0.09 0.40 0.03 0.07 0.09 0.40
NET 0.06 0.11 0.14 0.59 0.10 0.18 0.23 0.95
NEFDp = gNEPpJ/exp(-t) [mJy*s^0.5] 0.4 0.7 1.0 6.0 0.6 1.1 1.6 9.4
NEFDb = gNEPbJ/exp(-t) [mJy*s^0.5] 0.3 0.5 0.9 5.5 0.2 0.4 0.7 4.3
NEFD 0.4 0.9 1.4 8.1 0.6 1.2 1.8 10.3
300K optics
(17) Mean surface temperature [K] 280
Black body occupation number at n 63 39 24 16
Black body RJ temperature T [K] 278 277 274 272
Emissivity mirrors / cryostat 4.9% 5.0%
Spectral radiance of mirrors [fW/m^2/Hz/sr] 0.04 0.09 0.24 0.49
Spectral radiance of warm optics [fW/m^2/Hz/sr] 0.04 0.09 0.24 0.50
T RJ for mirrors [K] 13.6 13.6 13.4 13.3
T RJ for cryostat warm optics [K] 13.9 13.8 13.7 13.6
    For P: apply x to mirrors (correct or not ?) but not to cryostat 300K
Power [pW] P=(2AWh/p)kTDn/l^2 13.7 13.6 33.3 6.5 3.4 3.4 8.3 1.6
NEPp = (2hnP)^0.5 [aW/Hz^0.5] 41 51 103 54 20 26 51 27
NEPb = P(pC/Dn)^0.5 [aW/Hz^0.5] 69 68 105 46 17 17 26 11
NEP 80 85 147 71 27 31 58 30
NETp = gNEPpQ/exp(-t) [mK*s^0.5] 0.11 0.14 0.12 0.39 0.22 0.28 0.24 0.78
NETb = gNEPbQ/exp(-t) [mK*s^0.5] 0.18 0.18 0.12 0.33 0.18 0.18 0.12 0.33
NET 0.21 0.23 0.17 0.51 0.28 0.33 0.27 0.85
NEFDp = gNEPpJ/exp(-t) [mJy*s^0.5] 0.8 1.1 1.2 5.4 1.3 1.8 1.9 8.5
NEFDb = gNEPbJ/exp(-t) [mJy*s^0.5] 1.4 1.5 1.2 4.6 1.1 1.2 1.0 3.6
NEFD 1.6 1.9 1.7 7.1 1.7 2.1 2.1 9.2
77K stage
Temperature cryostat optics on N2 stage [K] 77
Black body occupation number at n 17 10 6 4
Black body RJ temperature T [K] 75 74 71 69
Emissivity 14%
Spectral radiance of N2 stage [fW/m^2/Hz/sr] 0.03 0.07 0.18 0.36
T RJ for [K] 10.7 10.5 10.2 9.8
Power [pW] P=(2AWh/p)kTDn/l^2 6.4 6.3 15.3 3.0 1.6 1.6 3.8 0.7
NEPp = (2hnP)^0.5 [aW/Hz^0.5] 28 35 70 37 14 18 35 18
NEPb = P(pC/Dn)^0.5 [aW/Hz^0.5] 32 32 48 21 8 8 12 5
NEP 43 47 85 42 16 19 37 19
NETp = gNEPpQ/exp(-t) [mK*s^0.5] 0.07 0.09 0.08 0.26 0.15 0.19 0.16 0.53
NETb = gNEPbQ/exp(-t) [mK*s^0.5] 0.08 0.08 0.06 0.15 0.08 0.08 0.06 0.15
NET 0.11 0.13 0.10 0.30 0.17 0.21 0.17 0.55
NEFDp = gNEPpJ/exp(-t) [mJy*s^0.5] 0.6 0.8 0.8 3.7 0.9 1.2 1.3 5.7
NEFDb = gNEPbJ/exp(-t) [mJy*s^0.5] 0.7 0.7 0.6 2.1 0.5 0.5 0.4 1.6
NEFD 0.9 1.0 1.0 4.2 1.0 1.3 1.3 6.0
TOTAL BACKGROUD
Power [pW] 28 30 97 28 7 7 24 7
NEPp = (2hnP)^0.5 [aW/Hz^0.5] 58 76 175 114 29 38 88 57
NEPb = P(pC/Dn)^0.5 [aW/Hz^0.5] 138 149 305 200 35 37 76 50
NEP [aW/Hz^0.5] 150 167 352 231 45 53 116 76
NETp = gNEPpQ/exp(-t) [mK*s^0.5] 0.15 0.20 0.21 0.82 0.31 0.41 0.41 1.64
NETb = gNEPbQ/exp(-t) [mK*s^0.5] 0.36 0.40 0.36 1.44 0.36 0.40 0.36 1.44
NET [mK*s^0.5] 0.39 0.45 0.41 1.66 0.48 0.57 0.54 2.18
1.20 1.27 1.32 1.32
NEFDp = gNEPpJ/exp(-t) [mJy*s^0.5] 1.2 1.7 2.0 11.3 1.9 2.6 3.2 17.7
NEFDb = gNEPbJ/exp(-t) [mJy*s^0.5] 2.8 3.3 3.5 19.9 2.2 2.6 2.8 15.6
NEFD [mJy*s^0.5] 3.1 3.7 4.1 22.9 2.9 3.7 4.2 23.6
0.95 1.00 1.04 1.03
TOTAL BACKGROUD for a standard elementary size
(18) Standard elementary size us [Fl] 1.1 Comon standard sizes: "beam" = 2*1.22 = 1st dark ring of the Airy diffraction pattern ~= 2 ; "HPBW" = "FWHM" = 1.03 ~= 1
(19) spatial coherence factor Cs 1 (<= extended source) 0.5 1.1 (<= incoherent point source case given for information, note that NEPb becomes poissonian like NEPp only when C = l^2/AW !)
Diffractive gaussian efficiency zs 45% 42% 33% 23%
zs/z 1.1 1.1 1.1 1.1 3.6 3.6 3.6 3.6
T/F [K/Jy] 0.26 F/T 3.81
P ~ (us/u)^2 [pW] 33 36 117 34 33 36 117 34
!! In case of incoherent signal C~1/u^2 => the NEXb behave like the NEXp ; they become Poissonian !!
NEPp ~ (us/u) 64 84 193 125 64 84 193 125
NEPb ~ (us/u)^2*(Cs/C)^0.5 167 181 369 243 167 181 369 243
NEP [aW/Hz^0.5] 179 199 417 273 179 199 417 273
NETp ~ 1/(us/u) 0.14 0.19 0.19 0.74 0.14 0.19 0.19 0.74
NETb ~ (Cs/C)^0.5 0.36 0.40 0.36 1.44 0.36 0.40 0.36 1.44
NET [mK*s^0.5] 0.39 0.44 0.40 1.62 0.39 0.44 0.40 1.62
NEFDp ~ (us/u)/(zs/z) 1.1 1.6 2.0 10.9 1.1 1.6 2.0 10.9
NEFDb ~ (us/u)^2*(Cs/C)^0.5/(zs/z) 3.0 3.5 3.8 21.2 3.0 3.5 3.8 21.2
NEFD [mJy*s^0.5] 3.2 3.9 4.3 23.8 3.2 3.9 4.3 23.8
Power from a source in a pixel
T RJ of the source seen by the pixel [K] 50
Power [pW] P=(2AWe-th/p)kTDn/l^2 21 21 48 8 5 5 13 2
total TRJ + Tbkg [pW] 49 51 144 36 12 13 37 9
Flux of the source [Jy] 500
Power [pW] P=(FAe-thz/xp)Dn 27 25 48 6 9 8 15 2
Dynamic: Pmax/Pmin 2.8 3.4 3.4 2.6