Bands at the 30m MRT, sizes of pixels and arrays for various FOVs, Power load, NEP, NET, and NEFD from the background
S.Leclercq - Nov 2009
The numbered variables are the free parameters for the optical and photometric calculations
The grey font is used for comments or optional calculations given for information but not used in the optical and photometric calculations
Diffraction size on the 30m, number of beam and pixels per FOV
Speed of light [m/s] c 3E+08 30m+GISMO F# 1.1
Boltzman constant [J/K] k 1.38E-23 BUG TES
Planck constant [J*s] h 6.63E-34 Pix pitch (mm) 2
Pix Size (Fl) 0.91
M1 Diameter [m] 30 Pix size (") 13.4
1) Wavelength [mm] 2 Beam width factor (Fl) 1.21 (see Mathcad Bolo_ideal_pixel)
Frequency [GHz] n 150 HPBW (") 18
Diffraction Pattern FWHM [mrad] 69
Diffraction Pattern FWHM ["] 14
Forward efficiency x (empiric fit) 96%
Beam efficiency b (Ruze) 72%
2) Fraction of unvigneted pupil diameter 92%
Telescope effective area [m^2] A 594
3) Pixel angular size u [Fl] 0.9
Pixel solid angle in the sky [sr] W 4.3E-09
Throughput AW [mm^2sr] 2.54
AW/l^2 0.64
Pixel efficiency on diffraction spot z 31%
FOV diameter ['] Number pixels in FOV discs, rounded at the upper group of 10s
1 20
2 60
3 132
4 240
5 370
6 530
7 720
8 940
9 1190
10 1470
11 1770
12 2110
My simple ATM model
Based on fits on ATM from Astro in Gildas, for the 50-400GHz range, with the error constraint |Dt/t|<4% at 100kHz resolution in the bands and 1MHz resolution in the atmospheric "walls",
built with Tatm = 275 K, Psea_level = 1015 mb, Altitude = Pico Veleta (Tau~P and Tau~T^3 => wv has the strongest effect in the range of possible P and T,
so my model ignore dependence in T and P for simplicity)
Continuum
Reference frequency nc [GHz] 250
225
Water Vapor slope ac [1/mmwv] 0.071 0.058
Dry continnum at nc bc 0.005 0.004
Kinetic lines
Central frequency no [GHz] 58.2 60.2 118.7 183.3 325.1 368.5 380.2
Width ns [GHz] 2.5 2 1 2.96 3.47 0.56 3.49
Central tau to 3.2 11.5 9.4 2.2 2 1 19
Water power pl (0 = O2 line, 1 = H2O line) 0 0 0 1 1 0 1
Gaussians fitting groups of close-packeted lines
Central frequency no [GHz] 58.1 62 65.3 440
Width ns [GHz] 2.5 2.1 3.1 80
Central tau to 17.6 20.2 0.2 0.13
Water power pl (0 = O2 line, 1 = H2O line) 0 0 0 1
Simple photometry calculations (reminder for the units of NEP: prefix "a" = atto = 10^-18)
Remarks 1: the RJ temperatures below are defined so that when used in the RJ approximation formula of the brightness, the result = the unapproximated Planck law
Remarks 2: the Power formula below assumes constant T (brightness) and h (overall efficiency) in the integration over the bandwidth => correct @ <2 % error in the mm atmospheric windows for T>2K
Remarks 3: the NET and NEFD are given for a choosen observing mode and for one pixel, their value for a standard size (beam of HPBW) is given at the end of the sheet
(Blockage M2 & quadurpod, leackage) 97%
4) Cabin optics transmission (M>2) 94%
5) Cryostat 300K transmission 95% 89% <= total warm parts
6) Cryostat 77K transmission 94%
7) Cryostat 4K transmission 81% 40% optional 4K Neutral Density Filter = 40%
8) Band pass filter transmission 65% 50% <= total cold parts
9) Detector absorbtion efficiency 90% 40% <= total optical chain
Global optical efficiency h 37% 15%  <= Without / with 4K NDF
10) Bandwidht [GHz] Dn 22
Band pass min freq [GHz] 139
Band pass max freq [GHz] 161
Band pass min wave [mm] 2.2
Band pass max wave [mm] 1.9
Bandwidth [mm] 0.29
11) Degree of polarization 0
Polarization parameter p 1
  monomode or coherent or extended source: C = 1 ; multimode and incoherent point source: C ~= l^2/AW = 4/(pu^2) if u>3, C ~= exp(-(0.6*u^((u+2)/(u+1))) if 0<u<3 (empricial approx by me). C can't be >1.
12) Spatial coherance factor C 1.0 0.6 1.6
13) Observing mode useful time ratio 80%
Observing mode efficiency g 1.12
NEP to NET = T/P(T) = Q/exp(-t) ; NEP to NEFD = F/P(F) = J/exp(-t) (Q and J are defined such that they don't depend on the atmospheric conditions)
   Q = pl^2/(2kAWhDn) [K/pW] 7.0
   J = px/(AhzDn) [Jy/pW] 63
T/F: (Q/J)(x/z) = (l^2/2kW) = D^2/2ku^2 [K/Jy] 0.34
 x/z 3.06
Atmosphere
14) Atmosphere  temperature (Ta) [K] 275
Black body occupation number at n 38
Brightness for frequencies [fW/m^2/Hz/sr] 1.9
(RJ approx brightness [fW/m^2/Hz/sr]) 1.9
Black body RJ temperature T [K] 271
15) Elevation [deg] 45
Airmass 1.41
16) Precipitable water vapor (wv) [mm] 1
Opacity tau meter (225GHz) 0.06
Opacity tau meter (225GHz) 0.06
  Opacity components for each band:
Atm continuum only 0.027
Atm O2 kinetic lines 0.007
Atm H2O kinetic lines 0.004
Atm O2 gaussian bunch 0.000
Atm H2O gaussian bunch 0.000
Atm total t (including airmass) 0.05
Emissivity 5%
Spectral radiance of atmosphere [fW/m^2/Hz/sr] 0.10
Atmos emission T RJ [K] T 14
Power [pW] P=(2AWh/p)kTDn/l^2 2.1
NEPp = (2hnP)^0.5 [aW/Hz^0.5] 20
NEPb = P(pC/Dn)^0.5 [aW/Hz^0.5] 14
NEP 25
NETp = gNEPpQ/exp(-t) [mK*s^0.5] 0.17
NETb = gNEPbQ/exp(-t) [mK*s^0.5] 0.11
NET 0.20
NEFDp = gNEPpJ/exp(-t) [mJy*s^0.5] 1.5
NEFDb = gNEPbJ/exp(-t) [mJy*s^0.5] 1.0
NEFD 1.8
Spillover
Temperature of environment behind M1 [K] 275
Emissivity 4%
Spectral radiance of behind M1 [fW/m^2/Hz/sr] 0.08
T RJ [K] 11.3
Power [pW] P=(2AWh/p)kTDn/l^2 1.7 1.6%
NEPp = (2hnP)^0.5 [aW/Hz^0.5] 18
NEPb = P(pC/Dn)^0.5 [aW/Hz^0.5] 11
NEP 22
NETp = gNEPpQ/exp(-t) [mK*s^0.5] 0.15
NETb = gNEPbQ/exp(-t) [mK*s^0.5] 0.09
NET 0.18
NEFDp = gNEPpJ/exp(-t) [mJy*s^0.5] 1.4
NEFDb = gNEPbJ/exp(-t) [mJy*s^0.5] 0.8
NEFD 1.6
300K optics
(17) Mean surface temperature [K] 280
Black body occupation number at n 38
Black body RJ temperature T [K] 276
Emissivity mirrors / cryostat 5.9% 5.0% 11% <= emissivity of system mirrors + cryostat
Spectral radiance of mirrors [fW/m^2/Hz/sr] 0.11
Spectral radiance of warm optics [fW/m^2/Hz/sr] 0.10
T RJ for mirrors [K] 16.2 29.2 <= system mirrors + cryostat
T RJ for cryostat warm optics [K] 13.8
    For P: apply x to mirrors (correct or not ?) but not to cryostat 300K
Power [pW] P=(2AWh/p)kTDn/l^2 4.9 5.0 4.8 <= system mirrors + cryostat with/without x
details of P: mirror / cryostat 2.5 2.4
NEPp = (2hnP)^0.5 [aW/Hz^0.5] 31
NEPb = P(pC/Dn)^0.5 [aW/Hz^0.5] 33
NEP 46
NETp = gNEPpQ/exp(-t) [mK*s^0.5] 0.26
NETb = gNEPbQ/exp(-t) [mK*s^0.5] 0.27
NET 0.38
NEFDp = gNEPpJ/exp(-t) [mJy*s^0.5] 2.3
NEFDb = gNEPbJ/exp(-t) [mJy*s^0.5] 2.5
NEFD 3.4
77K stage
Temperature cryostat optics on N2 stage [K] 77
Black body occupation number at n 10
Black body RJ temperature T [K] 73
Emissivity 6%
Spectral radiance of N2 stage [fW/m^2/Hz/sr] 0.03
T RJ for [K] 4
Power [pW] P=(2AWh/p)kTDn/l^2 0.8
NEPp = (2hnP)^0.5 [aW/Hz^0.5] 13
NEPb = P(pC/Dn)^0.5 [aW/Hz^0.5] 5
NEP 14
NETp = gNEPpQ/exp(-t) [mK*s^0.5] 0.10
NETb = gNEPbQ/exp(-t) [mK*s^0.5] 0.04
NET 0.11
NEFDp = gNEPpJ/exp(-t) [mJy*s^0.5] 0.9
NEFDb = gNEPbJ/exp(-t) [mJy*s^0.5] 0.4
NEFD 1.0
TOTAL BACKGROUD
Integration time:
Power [pW] 9 source 1 mJy
sigma 5
NEPp = (2hnP)^0.5 [aW/Hz^0.5] 43 NEFD coef 2
NEPb = P(pC/Dn)^0.5 [aW/Hz^0.5] 64 result 3294.71 sec
NEP [aW/Hz^0.5] 77 54.91 min
0.92 hour
NETp = gNEPpQ/exp(-t) [mK*s^0.5] 0.36
NETb = gNEPbQ/exp(-t) [mK*s^0.5] 0.53
NET [mK*s^0.5] 0.64 extended 1.9 point
x/z = 3.06
NEFDp = gNEPpJ/exp(-t) [mJy*s^0.5] 3.2
NEFDb = gNEPbJ/exp(-t) [mJy*s^0.5] 4.7
NEFD [mJy*s^0.5] 5.7 point 1.9 extended
TOTAL BACKGROUD for a standard elementary size
(18) Standard elementary size us [Fl] 1.1
(19) spatial coherence factor Cs 1 (<= extended source) 0.5 1.1 (<= incoherent point source approxs : u<3 and u>3)
Diffractive gaussian efficiency zs 41%
zs/z 1.32
P ~ (us/u)^2 [pW] 14.2
NEPp ~ (us/u) 53
NEPb ~ (us/u)^2*(Cs/C)^0.5 96
NEP [aW/Hz^0.5] 109
NETp ~ 1/(us/u) 0.29
NETb ~ (Cs/C)^0.5 0.53
NET [mK*s^0.5] 0.60 extended 1.4 point
x/zs = 2.31 T/F = 0.23
NEFDp ~ (us/u)/(zs/z) 3.0
NEFDb ~ (us/u)^2*(Cs/C)^0.5/(zs/z) 5.4
NEFD [mJy*s^0.5] 6.1 point 2.7 extended