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The ORION-B dataset

Acquired by the wide-band
receiver at the IRAM-30 m

∼ 30 molecular line cubes
for J=1-0 transition

Spatially and spectrally
resolved

1074× 758 profiles

240 velocity channels
13CO (1-0) line cube (small

part only).
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The ORION-B dataset

Integrated intensity (left) and mean, min and max spectra (right) of
13CO (1-0) and C17O (1-0).
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About denoising

Interest of denoising

Increasing the signal-to-noise ratio is an important step to
lead to discoveries.

Necessary to find statistical relations between certain lines and
physical parameters (otherwise hidden by noise).
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About denoising

Assumption

There is a “true” signal s which can only be estimated
through measurements giving data d = f (s).

Example: in the case of an additive noise, we have d = s + n,
with n being randomly distributed.

Hyperspectral cubes denoising

Important topic in remote sensing and many algorithm has be
developed since decades.

Methods essentially developed with Earth images.

What about molecular line cubes?
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Denoising by dimension reduction

Intrinsic vs extrinsic dimension

The extrinsic dimension n of a dataset is its apparent
number of features.

The intrinsic dimension m is the minimal number of features
that can generate the dataset by mapping.

If m ≪ n, there is a lot of redundancy that can be exploited
to “correct” the measurements.

To be able to do this, we need:

The intrinsic dimension of the measurements to be much
smaller than the extrinsic dimension,

To know the relation between features and measurements.
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Denoising by dimension reduction

Illustration with the Gaussian fitting

In the case of a Gaussian decomposition of a profile, we go from K
velocity channels to only 3 values:

The encoder and decoder are set such that they minimize a
“distance” between inputs and outputs. This is the loss function.
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Autoencoder based denoising

Example of a autoencoder neural network with extrinsic and extrinsic
dimensions of 10 and 3, respectively.
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Autoencoder based denoising

Illustration of AE training, profile by profile. The same E and D function
is used for every profiles.
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Noise model: noise RMS

RMS of noise computed over the spectral axis (left) and over the spatial
axes (right)

−→ Noise intensity is pixel dependent and channel dependent
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Molecular line cubes vs Earth RS images

Comparison between a hyperspectral Earth image profile named Indian
Pines (continuum, left) and a line profile (right).
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Molecular line cubes vs Earth RS images

Indian Pines 13CO (1-0)
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Examples of channels of Indian Pines (left) and 13CO (1-0) (right). The
latter seem to be independent.
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Molecular line cubes vs Earth RS images

Noise is pixel dependent, spectrally and spatially correlated
−→ false signal

Unlike Earth remote sensing cubes, very low information
redundancy
−→ need to make the best use of itRadioastronomy Line

13CO (1 − 0) in Orion B
Hyperspectral Data

Indian Pines
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13CO line and Earth image “Indian Pines” correlation matrices
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A locally connected NN with prior information

Proposition 1: loss function to address the problem of sparcity

The normal behavior of an autoencoder is not to put to
exactly zero the signal free voxels.

We want a loss function to enforce this behavior and to use
the previous segmentation to help it to do this.

To do so, we use a prior from a 3D segmentation method.

L(d̂i ,j , di ,j) =
1

K

K∑
k=1


(d̂i,j,k − di,j,k )

2

σi,j
if probably signal + noise∣∣∣∣ d̂i,j,kσi,j

∣∣∣∣q if probably only noise

with q ∈]0, 1] an hyperparameter than controls the sparcity.
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A locally connected NN with prior information

Distant channels share almost no information
−→ most of the weights are useless, or even counter-productive

Proposition 2: locally connected architecture

We propose this kind of architecture where distant channels cannot
be combined together.

Example of fully connected AE Example of locally connected AE
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Gaussian fitting method ROHSA

We compare our results with ROHSA gaussian fitting methods:

ROHSA: Regularized Optimization for Hyper-Spectral
Analysis (Marchal+2019).

Spatially constrained Gaussian decomposition of profiles.

Goal: To extract the multiphase structure of the ISM.

The reconstruction after the decomposition can be seen as a
denoising.
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Denoising performances: RMS of residuals
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Denoising performances: residuals
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Conclusion

Take-home messages

Usual dimension reduction based denoising methods are
poorly adapted to line cubes.

We have developed a deep learning method based on an
in-depth data analysis.

This method is able to denoise cubes with a SNR-dependent
behavior in order not to distort the signal.

Paper: Einig et al., A&A, 677, A158 (2023).

GitHub: einigl/line-cubes-denoising – can be used for
other datasets.
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