

Deep learning denoising by dimension reduction Application to the ORION-B line cubes

L. Einig, J. Pety, A. Roueff, P. Vandame, J. Chanussot, M. Gerin and the ORION-B consortium

Lucas Einig

ORION-B winter workshop

The ORION-B dataset

- Acquired by the wide-band receiver at the IRAM-30 m
- \sim 30 molecular line cubes for J=1-0 transition
- Spatially and spectrally resolved
- 1074 × 758 profiles
- 240 velocity channels

The ORION-B dataset

Integrated intensity (left) and mean, min and max spectra (right) of $\rm ^{13}CO$ (1-0) and $\rm C^{17}O$ (1-0).

About denoising

Interest of denoising

- Increasing the signal-to-noise ratio is an important step to lead to discoveries.
- Necessary to find statistical relations between certain lines and physical parameters (otherwise hidden by noise).

Paper review

About denoising

Assumption

- There is a "true" signal *s* which can only be estimated through measurements giving data *d* = *f*(*s*).
- **Example:** in the case of an additive noise, we have d = s + n, with *n* being randomly distributed.

About denoising

Assumption

- There is a "true" signal s which can only be estimated through measurements giving data d = f(s).
- **Example:** in the case of an additive noise, we have d = s + n, with *n* being randomly distributed.

Hyperspectral cubes denoising

- Important topic in remote sensing and many algorithm has be developed since decades.
- Methods essentially developed with Earth images.
- What about molecular line cubes?

Intrinsic vs extrinsic dimension

- The extrinsic dimension n of a dataset is its apparent number of features.
- The **intrinsic dimension** *m* is the minimal number of features that can generate the dataset by mapping.
- If *m* ≪ *n*, there is a lot of **redundancy** that can be exploited to "correct" the measurements.

Intrinsic vs extrinsic dimension

- The extrinsic dimension n of a dataset is its apparent number of features.
- The **intrinsic dimension** *m* is the minimal number of features that can generate the dataset by mapping.
- If *m* ≪ *n*, there is a lot of **redundancy** that can be exploited to "correct" the measurements.

To be able to do this, we need:

- The intrinsic dimension of the measurements to be much smaller than the extrinsic dimension,
- To know the **relation** between features and measurements.

Illustration with the Gaussian fitting

In the case of a Gaussian decomposition of a profile, we go from K velocity channels to only **3 values**:

Illustration with the Gaussian fitting

In the case of a Gaussian decomposition of a profile, we go from K velocity channels to only **3 values**:

The encoder and decoder are set such that they minimize a "distance" between inputs and outputs. This is the **loss function**.

Paper review

Autoencoder based denoising

Example of a autoencoder neural network with extrinsic and extrinsic dimensions of 10 and 3, respectively.

Paper review

Autoencoder based denoising

Illustration of AE training, profile by profile. The same ${\cal E}$ and ${\cal D}$ function is used for every profiles.

Paper review

Noise model: noise RMS

RMS of noise computed over the spectral axis (left) and over the spatial axes (right)

 \longrightarrow Noise intensity is pixel dependent **and** channel dependent

Molecular line cubes vs Earth RS images

Comparison between a hyperspectral Earth image profile named Indian Pines (continuum, **left**) and a line profile (**right**).

Molecular line cubes vs Earth RS images

Examples of channels of Indian Pines (left) and ${}^{13}CO$ (1-0) (right). The latter seem to be independent.

Paper review

Molecular line cubes vs Earth RS images

- Noise is pixel dependent, spectrally and spatially correlated

 → false signal
- Unlike Earth remote sensing cubes, very low information redundancy

 \longrightarrow need to make the best use of it

¹³CO line and Earth image "Indian Pines" correlation matrices

Proposition 1: loss function to address the problem of sparcity

- The normal behavior of an autoencoder is **not** to put to exactly zero the signal free voxels.
- We want a loss function to enforce this behavior and to use the previous segmentation to help it to do this.
- To do so, we use a prior from a 3D segmentation method.

$$\mathcal{L}(\widehat{d}_{i,j}, d_{i,j}) = rac{1}{\mathcal{K}} \sum_{k=1}^{\mathcal{K}} \left\{ egin{array}{c} rac{(\widehat{d}_{i,j,k} - d_{i,j,k})^2}{\sigma_{i,j}} & ext{if probably signal + noise} \ \left|rac{\widehat{d}_{i,j,k}}{\sigma_{i,j}}
ight|^q & ext{if probably only noise} \end{array}
ight.$$

with $q \in]0,1]$ an hyperparameter than controls the sparcity.

A locally connected NN with prior information

Distant channels share almost no information

 \longrightarrow most of the weights are useless, or even counter-productive

A locally connected NN with prior information

Distant channels share almost no information

 \longrightarrow most of the weights are useless, or even counter-productive

Proposition 2: locally connected architecture

We propose this kind of architecture where distant channels cannot be combined together.

Example of fully connected AE

We compare our results with ROHSA gaussian fitting methods:

- **ROHSA**: Regularized Optimization for Hyper-Spectral Analysis (Marchal+2019).
- Spatially constrained Gaussian decomposition of profiles.
- **Goal**: To extract the multiphase structure of the ISM.
- The reconstruction after the decomposition can be seen as a denoising.

Denoising performances: RMS of residuals

Denoising performances: residuals

Conclusion

Take-home messages

- Usual dimension reduction based denoising methods are poorly adapted to line cubes.
- We have developed a deep learning method based on an in-depth data analysis.
- This method is able to denoise cubes with a SNR-dependent behavior in order not to distort the signal.

Paper: Einig et al., A&A, 677, A158 (2023).

 GitHub: einigl/line-cubes-denoising - can be used for other datasets.

References

F. Le Petit et al. (2006)

A model for atomic and molecular interstellar gas: The Meudon PDR code

The Astrophysical Journal Supplement Series, 164, p. 506

R. Wu et al (2018)

Constraining physical conditions for the PDR of Trumpler 14 in the Carina Nebula

Astronomy & Astrophysics, 618, p. A53

J. Pety et al. (2017)

The anatomy of the Orion B giant molecular cloud: A local template for studies of nearby galaxies

Astronomy & Astrophysics, 599, p. A98