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1/ Interstellar medium models 3/ Training set cleaning and architecture design
3 Numerical simulations are used to model complex = Qur approach: improve on network training procedure (point 1) and on its
astrophysics phenomena. Most realistic models can architecture design (points 2, 3, 4).

take into account a wide range of multiphysics aspects.

+ Computing time and memory resources require-
ments can be very demanding, limiting their usability.

+ Often replaced by reduced models, approximating the
original behavior with lower complexity.

= Usually interpolation methods. Lon(f,(x,y,m)) =m- (f(x) —y)® with m € {0,1}

J We present a reduction of the Meudon PDR
code [1]| based on an artificial neural network (ANN).

+ Numerical model of photodissociation regions (PDRs)
(e.g., the Horsehead Nebula, illuminated by Alnitak).

1. Anomalies identification: we perform a three-stage procedure.

+ We train a network with a Cauchy loss (robust to outliers).

+ Training points with highest errors: reviewed on the basis of physics knowledge.
+ Another training with a masked squared error: abnormal points are ignored.

2. Polynomial expansion of inputs: helps the network create non-linearities from few
inputs. Calculated at runtime to ensure the model differentiability:.

3. Dense architecture: exploits inputs and intermediate results to predict outputs.
—> We use an architecture inspired by the convolutive network DenseNet [3].
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+ Process a combination of inputs in about six hours. 4/ RegreSSIOn results
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5/ Conclusion

v ANNs outperform interpolation methods on every metrics.
. v Detection of anomalies and robust learning.
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