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1/ Interstellar medium models
r Numerical simulations are used to model complex
astrophysics phenomena. Most realistic models can
take into account a wide range of multiphysics aspects.
F Computing time and memory resources require-
ments can be very demanding, limiting their usability.
F Often replaced by reduced models, approximating the
original behavior with lower complexity.
Ù Usually interpolation methods.
r We present a reduction of the Meudon PDR
code [1] based on an artificial neural network (ANN).
F Numerical model of photodissociation regions (PDRs)
(e.g., the Horsehead Nebula, illuminated by Alnitak).

F From a few parameters, the model calculates the
intensity of numerous emission lines for various species.

F Process a combination of inputs in about six hours.

2/ Challenges
r Most works on ANNs consider many independent inputs
and few outputs while the opposite is true here.
r The PDR code can produce anomalies ( 6= outliers).
Ù We want to train a model that does not learn them.
r For Bayesian inference [2], the network must be
F Differentiable (at least to order 2) from end to end.
F As regularized as possible to avoid significant errors on
successive derivatives (e.g., due to oscillations).
r Comparison of ANNs with interpolations in terms of:
F Speed: Evaluation time for a batch of 1 000 entries.
F Memory: Number of parameters to describe the model.
F Accuracy: Average and 99% percentile error factor.
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3/ Training set cleaning and architecture design
Ù Our approach: improve on network training procedure (point 1) and on its
architecture design (points 2, 3, 4).
1. Anomalies identification: we perform a three-stage procedure.
F We train a network with a Cauchy loss (robust to outliers).
F Training points with highest errors: reviewed on the basis of physics knowledge.
F Another training with a masked squared error: abnormal points are ignored.

Lm(f , (x, y, m)) = m · (f(x)− y)2 with m ∈ {0, 1}

2. Polynomial expansion of inputs: helps the network create non-linearities from few
inputs. Calculated at runtime to ensure the model differentiability.
3. Dense architecture: exploits inputs and intermediate results to predict outputs.
Ù We use an architecture inspired by the convolutive network DenseNet [3].

Example of fully connected ANN vs. densely connected ANN

4. PCA to size hidden layers: we exploit the linear redundancy between outputs to
adequately size the penultimate layer and significantly reduce the number of parameters.

4/ Regression results

Performance of interpolation methods
and of proposed neural networks

Method Error factor Memory Speed
Mean 99% pc. (MB) (ms)

In
te

rp
. Near. neigh. 1 310% 1 130% 1 650 62

Linear 15.7% 230% 1 650 1.5e3
Cubic spline 11.2% 220% 1 650 -
RBF linear 10.2% 96.8% 1 650 1.1e4

A
N

N

S 7.3% 64.8% 118 12
S+P 6.2% 49.7% 118 13

S+P+A 5.5% 42.3% 118 13
S+P+A+D 4.5% 33.1% 125 11

S: sizing of the last hidden layer using PCA
P: polynomial transform of inputs

A: anomalies removal on the training set
D: dense architecture

5/ Conclusion
3ANNs outperform interpolation methods on every metrics.
3Detection of anomalies and robust learning.
3Efficient computation of successive derivatives.
3Paves the way to efficient inferences on large multi-line maps.
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