@IS MServices

DOCUMENTATION

AutoRank: Automatic tracer ranking
pipeline

October 28, 2020




AutoRank: Automatic tracer finding pipeline

1 Overview

AutoRank searches for the best observable tracers of any physical variable, based on grids of
astrochemical models. It can be applied to any existing model grid. It is presented in Bron et al.
(2020). See this paper for a description of the method.

Its purpose is the following:

* You are interested in an unobservable quantity (e.g. the ionization fraction of the medium in
Bron et al. 2020)

* You want to find out which are the best observable tracers of this quantity among a (possibly
large) number of observables

* You have a grid of astrophysical models in which both the observable quantities and the
target unobservable quantities are computed (the target quantity might also be a parameter
of the model)

» The grid explores the range of physical conditions you expect to be present in the medium
you intend to observe (or use observations of)

AutoRank will then rank all possible tracer ratios according to how well they allow to estimate the
target quantity, and provide for each of the best ratios a Random Forest model able to predict the
target quantity from the chosen ratio.

2 Requirements

AutoRank is provided as a Python 3 script. It requires the following python modules:
* 0S
» matplotlib
* numpy
* sklearn
* corner

- treelite’ (optional, necessary only to export the Random Forest models in a reusable format).

3 Use

To run AutoRank, open a terminal window in the directory where AutoRank.py is located and
type:

python3 AutoRank.py

AutoRank is provided with an example model grid, and can be run "as is" as soon as downloaded
to test it.

10n Mac OS, treelite requires installing libomp through the command "brew install libomp".




AutoRank: Automatic tracer finding pipeline

The configuration of the script in done in the Aut oRank . py file, at the beginning. The configuration
parameters are described below.

3.1 Path to the model grid file

The results of the model grid you wish to use should be gathered in a single ASCII datafile, with
one line per model and one column per quantity (both computed quantities and model parameters
can be mixed in any order). If comment lines are present at the beginning of the file, they should
start with the character '#’. The values in the data file should not be logarithms of the physical
values as the script will convert them to log10 values automatically.

The path to the model grid data file needs to be provided in the variable mode1_grid_data_file.

All outputs will be produced in an output directory named
"Outputs_{name_of_your_model_grid_file}".

3.2 Specifying the observable quantities and the target quantity

To specify the variables that you want to consider as observable (potential tracers of the quantity
of interest), set the variable obs_quantities_col_num to contain a list of the column num-
bers of the observable variables (in the model grid data file). The column numbers are counted
starting from 0. Then specify the names of the chosen observable quantities in the variable
obs_quantity_names (list of strings). Latex syntax is accepted (see the commented example
line in the AutoRank . py file).

To specify the target variable, set the the variable target_col_numto contain the column number
of the target variables (in the model grid data file). The column numbers are counted starting from
0. Then specify the name of the target variable in the variable target_name (string). Latex syntax
is accepted (see the commented example line in the AutoRank . py file).

3.3 Random Forest hyperparameter tuning

The Random Forest models used in AutoRank depend of a few hyperparameters. The two relevant
hyperparameters in our case are the number of tree in the forest and the maximum tree depth. By
default, AutoRank will automatically tune the hyperparameters value (see Appendix A in Bron et al.
2020 for a discussion of the method to select the hyperparameter values). The chosen values will
be displayed in the terminal during the run.

In addition, a figure providing diagnostics of the hyperparameter selection procedure is produced
(Hyperparameter_tuning_diagnostics.pdf in the output directory). The procedure (a par-
tial grid optimization) is the following (see Appendix A in Bron et al. 2020 for more detail) :

+ Afirst rough ranking of the ratios is performed using default values of the RF hyperparameters
(100 trees, and no limit on the maximum depth).

+ Only the best and worst ratio from this first ranking are used to optimize the hyperparameter
values.




AutoRank: Automatic tracer finding pipeline

* A grid search is performed, exploring ranges of values of the number of trees and the maxi-
mum tree depth, and estimating the fit performance trhough the R? coefficient for each com-
bination (the out-of-bag estimates are used as proxies for the generalization error).

« A compromise is sought between the best performance for the two selected ratios. We seek
values that give R? within 0.01 of the optimum for both ratios, and favor lower number of trees
and lower maximum tree depth if possible.

The diagnostics figure shows the R?> maps (as functions of the number of trees and maximum
tree depth) for the best and worst ratios determined in the preliminary ranking. The red contours
show the region where the R? is within 0.01 of the optimum for each ratio, while the green contour
shows the region where both are within 0.01 of the optimum (the red contours can be partly hidden
beneath the green contour or be outside of the displayed region).

If the automatic selection of the hyperparameter values seems unsatisfactory from the inspection
of this figure, you can manually fix values by setting fix_RF_hyperparams to True and choosing
values for N_trees and Max_depth.

Alternatively, you can change the grid across which the optimization is made by changing the
values of n_est_grid and max_depth_grid.

4 Outputs

The script will display a figure presenting the ranking of the best ratios (for the purpose of tracing the
target quantity). The complete ranking table is saved both as an ASCII data file (ranking_table.dat)
and as a latex table (ranking_table.tex).

For each of the ten best ratios, a figure is saved presenting a scatterplot of the target quantity as a
function of the considered ratio, with a curve corresponding to the best RF model overplotted.

Finally, if the treelite Python module is installed, the trained RF models for each of the ten
best ratios are provided as compilable libraries reusable on any system/architecture. You must
first select in the variable platform the type of system on which you intend to reuse the RF
model (not necessarily the same as the system on which you are running Autorank.py). Once
Autorank.py has run, for each of the ten best ratios, a . zip archive is provided in the output
folder containing automatically generated source files and makefiles.

To reuse the RF models, first copy this archive to the machine where you intend to reuse the
RF model, then unzip the archive and compile its content by running the command make. This
produces a shared library file (extension ".dylib", ".so" or ".dIlI" depending on the type of system
you selected).

To load and use these models from a python script, you can adapt the following code :

import treelite_runtime
model = treelite_runtime.Predictor (filename, verbose=True)
predictions = model.predict (treelite_runtime.Batch.from_npy2d(your_data_points))

where filename should be the compiled library file corresponding to the RF model you want to
load (extension ".dylib", ".s0" or ".dll"), and your_data_points the observed values (as a 2D

4



AutoRank: Automatic tracer finding pipeline

numpy array) of the ratio from which you want to predict the target quantity. The provided input
values should be log,, of the values, and the predictions will be in log,, of the target variable.

These compiled library files can also be used from C code. See the documentation here :
https://treelite.readthedocs.io/en/latest/tutorials/deploy.html#option-2-deploy-prediciton-code-only



https://treelite.readthedocs.io/en/latest/tutorials/deploy.html#option-2-deploy-prediciton-code-only

AutoRank: Automatic tracer finding pipeline




Bibliography

Bron, E., Roueff, E., Gerin, M., et al. 2020, A&A




	Overview
	Requirements
	Use
	Path to the model grid file
	Specifying the observable quantities and the target quantity
	Random Forest hyperparameter tuning

	Outputs

