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ABSTRACT

Context. The nature of turbulence in molecular clouds is one of the key parameters that control star formation efficiency: compressive
motions, as opposed to solenoidal motions, can trigger the collapse of cores, or mark the expansion of Hii regions.
Aims. We try to observationally derive the fractions of momentum density (ρv) contained in the solenoidal and compressive modes of
turbulence in the Orion B molecular cloud and relate these fractions to the star formation efficiency in the cloud.
Methods. The implementation of a statistical method applied to a 13CO(J = 1−0) datacube obtained with the IRAM-30 m telescope,
enables us to retrieve 3-dimensional quantities from the projected quantities provided by the observations, which yields an estimate
of the compressive versus solenoidal ratio in various regions of the cloud.
Results. Despite the Orion B molecular cloud being highly supersonic (mean Mach number ∼6), the fractions of motion in each
mode diverge significantly from equipartition. The cloud’s motions are, on average, mostly solenoidal (excess >8% with respect to
equipartition), which is consistent with its low star formation rate. On the other hand, the motions around the main star forming
regions (NGC 2023 and NGC 2024) prove to be strongly compressive.
Conclusions. We have successfully applied to observational data a method that has so far only been tested on simulations, and we
have shown that there can be a strong intra-cloud variability of the compressive and solenoidal fractions, these fractions being in turn
related to the star formation efficiency. This opens a new possibility for star formation diagnostics in galactic molecular clouds.

Key words. turbulence – methods: statistical – ISM: clouds – ISM: kinematics and dynamics – radio lines: ISM –
ISM: individual objects: Orion B

1. Introduction

The evolution of molecular clouds is controlled by a com-
plex interplay of large-scale phenomena and microphysics:
chemistry and interaction of the matter with the surrounding
far-UV and cosmic-ray radiation control the thermodynamic
state of the gas and its coupling to the magnetic field. The
medium is highly turbulent, with Reynolds numbers reach-
ing 107 and magnetic Reynolds numbers reaching 104 (Draine
2011). Magneto-hydrodynamic (MHD) turbulence is one of the

? Based on observations carried out at the IRAM-30 m single-
dish telescope. IRAM is supported by INSU/CNRS (France), MPG
(Germany) and IGN (Spain).

main counter-actions to gravity (Hennebelle & Falgarone 2012;
Federrath & Klessen 2012; Padoan et al. 2014), as well as the
major mechanism that shapes the clouds: their fractal geome-
try is related to the properties of their turbulent velocity field
(Pety & Falgarone 2000; Hily-Blant et al. 2008; Federrath et al.
2009). The dissipation timescale for the turbulent energy of a
molecular cloud is shorter (∼1 Myr, Mac Low 1999) than the age
of these clouds (∼20−30 Myr, Larson 1981). Hence, a continu-
ous energy injection must exist (Hennebelle & Falgarone 2012,
and references therein). The proposed injection mechanisms
may be either external, for instance Galactic shear or nearby su-
pernovae explosions (Kim & Ostriker 2015), or internal, like the
expansion of Hii regions and molecular outflows of the recently
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formed stars (Hennebelle & Falgarone 2012). The nature of tur-
bulence, and notably its solenoidal or compressive forcing, also
plays a key role in the star formation efficiency (SFE) of molecu-
lar clouds (Federrath & Klessen 2012, 2013). In particular, com-
pressive motions bear the mark of various phenomena related
more or less directly to the formation of stars: infall on filaments,
collapsing dense cores, expansion around young stars, etc. As a
result, we can expect that a more compressive cloud is a more ac-
tive cloud, probably more likely to be forming stars, as proposed
by Federrath & Klessen (2012).

In this work, we propose to measure for the first time (to our
knowledge) the relative fractions of momentum in the solenoidal
and compressible modes of turbulence in a molecular cloud, fol-
lowing a method devised and tested on numerical simulations by
Brunt et al. (2010) and Brunt & Federrath (2014). Our goal is to
obtain a quantitative estimation of these fractions from observa-
tional data, and to compare their ratio with the star formation
efficiency that was derived from independent data. We investi-
gate whether different fractions of compressive and solenoidal
motions might provide a diagnostic for the variation of the star
formation efficiency among molecular clouds. A different pro-
portion of compressive forcing might be the reason why some
molecular clouds form stars at a high rate while others do not
(Federrath et al. 2010; Federrath & Klessen 2012; Renaud et al.
2014).

Our object of study is a large region of a nearby giant
molecular cloud (GMC), namely the south-western edge of the
Orion B cloud (Barnard 33 or Lynds 1630). Orion B is relatively
close to us, at a typical distance of ∼400 pc (Menten et al. 2007;
Schlafly et al. 2014), so that a spatial resolution of 25′′ corre-
sponds to 0.05 pc or 104 AU in the cloud. The total mass of
Orion B is estimated to be 7 × 104 M� (Lombardi et al. 2014),
and the average incident FUV radiation field is G0 ∼ 45
(Pety et al. 2017). Orion B is located in the Orion GMC com-
plex (Kramer et al. 1996; Ripple et al. 2013), east of the famous
Orion Belt. Alnitak, the eastmost of the three belt stars shines
in the foreground of the cloud. The south-western edge of the
cloud represents an ideal laboratory to study star formation, and
features several remarkable regions. First, the cloud is illumi-
nated by the massive star σOri that creates an Hii region, the
emission nebula IC 434, bounded on its eastern side by an ion-
ization front. Silhouetted against this bright background, a dark
cloud can be seen: the famous Horsehead nebula. HD 38087 also
creates a small Hii region, IC 435. Still embedded in Orion B,
the star forming region NGC 2024, known as the Flame Neb-
ula, hosts several massive O-type young stellar objects, which
have created compact Hii regions inside the cloud. NGC 2024
lies just east of the Alnitak star, and is crossed by a filament that
is seen in absorption in visible light, and in emission in the radio
range. The reflection nebula NGC 2023 is a quieter counterpart
of NGC 2024, hosting young B-type stars. It lies north-east of
the Horsehead nebula. The rest of the cloud contains extended
and quieter areas with strong filamentary structures (Fig. 1). This
area has been extensively observed in the 3 mm range with the
IRAM-30 m telescope (PI: J. Pety). This survey has led to a se-
ries of papers (Liszt & Pety 2016; Pety et al. 2017; Gratier et al.
2017) to which this article belongs.

The paper is organised as follows. In Sect. 2, we briefly de-
scribe the observations by the ORION-B (Outstanding Radio
Imaging of OrioN B) collaboration, and the data we use here.
In Sect. 3, we present the concepts and equations of the statis-
tical method and the details of its implementation, from noise
filtering to the computation of power spectra and the estima-
tion of velocity-density correlations. The results are described

Fig. 1. H2 column density map of the south-western part of the Orion B
giant molecular cloud, derived from Herschel Gould Belt Survey obser-
vations (André et al. 2010; Schneider et al. 2013). The field observed by
the Orion-B collaboration and used for this work is overlaid in red. The
blue squares mark the nebulae NGC 2024, NGC 2023 and the Horse-
head, and the pink star symbols mark the stars Alnitak, HD 38087 and
σOri (north to south).

in Sect. 4, and discussed in Sect. 5 with a special emphasis on
the relation of the turbulence properties with the star formation
efficiency in Orion B. In the appendix, we present our computa-
tion of the Mach number map in the cloud.

2. Observations

2.1. The Orion B project dataset

The Orion B project (PI: J. Pety) has already mapped the
south-western edge of the Orion B molecular cloud with the
IRAM-30 m telescope over a field of view of 1.5 square de-
grees in the full frequency range from 84 to 116 GHz at 200 kHz
spectral resolution (Pety et al. 2017). The red rectangle in Fig. 1
shows the field of view observed up to now, over an H2 column
density map produced by the Herschel Gould Belt Survey con-
sortium (André et al. 2010; Schneider et al. 2013). The mapped
area covers 56× 98 arcmin (about 6× 11 parsecs at the assumed
distance of Orion B, 400 pc) in size.

So far, the observations provided about 250 000 spectra over
a 32 GHz bandwidth, yielding a position-position-frequency
cube of 370 × 650 × 160 000 pixels, each pixel covering
9′′ × 9′′ × 0.5 km s−1 (at Nyquist sampling). The reduced dataset
amounts to 100 GB of data. The data reduction is described in
details in Pety et al. (2017).

This dataset is unique for its extensive coverage, both spa-
tially and spectrally, at a typical resolution of 25′′ and a me-
dian noise of 0.1 K [Tmb] per channel over a 32 GHz spectral
range. From the spatial point of view, the survey gives us ac-
cess to a large range of scales in the molecular cloud, from
50 mpc to 10 pc. For the analysis of turbulence properties (see
Sect. 4.3), it means that we are able to study a large fraction
of the inertial range of the turbulence, with a potential view on

A99, page 2 of 15

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629220&pdf_id=1


J. H. Orkisz et al.: Turbulence and star formation efficiency in Orion B

Fig. 2. Maps of the average brightness temperature of the 13CO(J = 1−0) line in four contiguous velocity ranges. The main-beam temperature
scale is indicated by the color bar on the right. The contour shows the value of 8.9 K km s−1 in the W0 map, corresponding to 0.43 K in the
mean temperature map integrated over the −0.5−20.5 km s−1 velocity range. The set of coordinates used for the observational campaign takes the
Horsehead PDR as a reference point, and aligns the IC 434 PDR along the vertical axis (14◦ counter-clockwise rotation with respect to equatorial
coordinates). The numbered squares in the first panel show the positions of the spectra presented in Fig. 3, from left to right.

the injection scale. The dissipation scale, on the other hand, is
of the order of a milli-parsec (Hennebelle & Falgarone 2012;
Miville-Deschênes et al. 2016), and, at a distance of 400 pc,
is only accessible using millimetre interferometers, and out of
reach for the IRAM-30 m telescope.

From the spectral point of view, having such a large band-
width observed in one go enabled us to image over 20 chemical
species (Pety et al. 2017), including those listed in Table 1. As
opposed to several small bandwidth mappings, the spectral lines
in this survey are observed in the same conditions and are well
inter-calibrated, which gives an unprecedented spectral accuracy
for such a large field of view.

2.2. The 13CO spectral data cube

Most of the work presented here was performed on the 13CO(J =
1−0) datacube1, which covers a velocity range of 40 km s−1 cen-
tred around the source systemic velocity of 10.5 km s−1 and a rest
frequency of 110.201 354 GHz. The datacube presents an root
mean square (rms) noise of σ = 0.17 K, and a median signal-to-
noise ratio of Tpeak/σ = 7.9.

The 13CO(J = 1−0) line was chosen because it offers one
of the highest signal-to-noise ratios over the whole map, but it
does not feature as much saturation as the 12CO(J = 1−0) line.
Signal is present at a S/N greater than 5 in the whole map, except
in the Hii regions around σ Ori and HD 38087, where molecular
gas is photodissociated. The brightest regions are the NGC 2023
nebula, the center of the NGC 2024 nebula, and its northern edge
(Fig. 4, left panel).

13CO is a good tracer of molecular gas, from moderately dif-
fuse and translucent regions (AV = 1−5 mag) up to moderately
dense and shielded gas (104 cm−3, AV = 10 mag). CO has a small
dipole moment (0.11 D), hence the rotational lines have low
Einstein coefficients (e.g., Mangum & Shirley 2015). This leads
to relatively easy collisional excitation, excitation temperatures

1 The data products associated to this paper are available at
http://www.iram.fr/~pety/ORION-B

approaching the kinetic temperature, and moderate line opaci-
ties except for the most abundant species, 12CO. The abundance
ratio 13CO/12CO is equal to 13C/12C or about 1/60 when chem-
ical fractionation reactions, which are limited to the most dif-
fuse regions, are inefficient (Wilson & Rood 1994). Therefore,
the 13CO abundance relative to H2 remains approximately con-
stant at a level of ∼2 × 10−6 (Dickman 1978) across most of the
cloud volume. 13CO starts to be depleted on dust grains in cold
cores, but these represent only a small fraction of the mass and a
negligible fraction of the volume of the Orion B molecular cloud
(Kirk et al. 2016).

Figure 2 shows the 13CO(J = 1−0) signal integrated over
four contiguous velocity ranges. It showcases the complexity of
the spectral structure of the cloud, with prominent variations of
the line profile with the position, which is a consequence of the
strong turbulence at play in the molecular cloud.

Up to four spectral components appear along each line of
sight within the field (Fig. 3). A main component is visible
around 10 km s−1, and a secondary component at lower veloc-
ity (about 5 km s−1). Sometimes an extra component at higher
velocity (about 14 km s−1), or secondary peaks around 5 and
10 km s−1appear too. The first two components are the most sig-
nificant ones at the scale of the whole cloud, being the only ones
visible in the mean spectrum of 13CO(J = 1−0), and have aver-
age velocities of 9.7 km s−1 and 4.9 km s−1 respectively. All the
components, despite being quite distinct on the spectral axis are,
however, thought to be part of the Orion B cloud (see discussion
in Pety et al. 2017).

3. Deriving the relative fraction of solenoidal
motions from a position-position-velocity cube

To measure the fraction of the solenoidal and compressive tur-
bulence modes, we apply the method developed by Brunt et al.
(2010) and Brunt & Federrath (2014). In this section, we first re-
call the method, its assumptions, and the way we implemented it.
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Fig. 3. 13CO(J = 1−0) spectra along selected lines of sights in the Orion B cloud, showing the diversity of velocity components (up to four per
spectrum). The coordinates of the various lines of sights are given in arc-minutes in our custom set of coordinates (δx, δy). The average spectrum
for the whole field, normalized to have the same peak temperature, is superimposed with a dashed line for comparison. The positions of the spectra
on the map are shown by white squares in the first panel of Fig. 2.

3.1. Description of the method

3.1.1. Principles and assumptions

The key point of this method is the fact that the objects we ob-
serve are fundamentally 3-dimensional (e.g., a molecular cloud),
but the observer only has access to a 2-dimensional projection
along the line of sight of that object. Brunt et al. (2010) de-
veloped a method to retrieve properties of the 3-dimensional
object that we are interested in, and which corresponds to a
3-dimensional field F3D, via the properties of the 2-dimensional
observational F2D, which is a projection of F3D along the z axis.
To achieve this, they use the fact that the Fourier transform
F̃2D of the 2-dimensional field is proportional to the kz = 0
cut through the Fourier transform F̃3D of the 3-dimensional
field. In short, F̃2D(kx, ky) ∝ F̃3D(kx, ky, kz = 0). If these fields
are isotropic, i.e., if they are functions of k = |k| alone, with
k = (kx, ky, kz) the wave vector and k the wave number, the
2-dimensional field enables us to reconstruct average properties
of the 3-dimensional field thanks to symmetry arguments.

The Brunt & Federrath (2014) method was developed as an
application of the Brunt et al. (2010) method to the case of vector
fields. For a vector field, such as a velocity or momentum field,
the dimensionality reduction that is due to the projection is made
worse by the fact that only one component of the vector (the line-
of-sight one) can be measured, thanks to the Doppler effect. In
this case, the next main tool to retrieve 3-dimensional properties
is the Helmholtz theorem, which enables to decompose any vec-
tor field in its divergence-free (solenoidal) and curl-free (com-
pressive) components, F⊥ and F||. These components are re-
lated via a local orthogonality in Fourier space, F̃⊥(k) ⊥ F̃||(k).
Solenoidal modes can be pictured as the modes of a turbulent
incompressible field, made of vertices and eddies. On the other
hand, compressive modes, made of compression and expansion
motions, are more likely to be generated by phenomena linked
to star formation.

The application of these methods implies several
requirements on the studied dataset. As mentioned earlier,
the statistical isotropy of the cloud is the first necessary point,
and enables the use of 2-dimensional averages as a means to
estimate 3-dimensional properties. It means that the method

cannot be applied to individual filaments, or to clouds where a
strong anisotropy is suspected, e.g., owing to the presence of a
strong magnetic field at low Mach numbers.

Second, the field is required to go smoothly to zero on its
borders. This property is needed to ensure that the decomposi-
tion of the field is unique, since the Helmholtz decomposition is,
in theory, defined up to a vector constant. It is also a necessary
condition for good behaviours of the Fourier transform, since
actual observational data are not periodic fields, unlike hydro-
dynamical simulations (see discussion in Brunt et al. 2010). This
implies that the studied field should be bounded in space like, for
example, a gravitationally bound cloud. In the case where the
signal extends up to the edge of the observed field, the dataset
has to be apodized.

Finally, from a practical viewpoint, Brunt et al. (2010) have
shown that their method works best for fields with power spectra
that are not too steep. Steep power spectra give measurements
that are very sensitive to the low spatial frequencies, which are
usually uncertain owing to poor statistics.

The compliance of our dataset with these requirements is dis-
cussed in detail in Sect. 5.1.

3.1.2. Equations and notations

The studied quantity is the momentum density field (hereafter
momentum), p = ρu, with ρ and u the volume density and the
velocity.

The 3-dimensional quantity we infer is

R = σ2
p⊥/σ

2
p, (1)

the ratio of the variance of the transverse (solenoidal) momen-
tum to the variance of the total momentum. For short, R will be
referred to as the solenoidal fraction in the rest of this paper.

According to Brunt & Federrath (2014), at hypersonic Mach
numbers (M = v/csound > 5) the solenoidal fraction does not
depend any more on the type of forcing, but instead converges
towards R ∼ 2/3. Brunt & Federrath (2014) note that this be-
haviour is different from what is observed by Federrath et al.
(2011), where the solenoidal fraction converges to different val-
ues depending on the type of forcing, but this is due to the fact
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that Brunt & Federrath (2014) consider the momentum density
field, while Federrath et al. (2011) describe the energy density
field.

This value of R ∼ 2/3 can be simply explained in terms
of equipartition of momentum between the compressive and
solenoidal modes (see, e.g., Federrath et al. 2008). A value of
R lower than 2/3 therefore means that there is more momentum
in the compressive modes of the flow, and that the cloud is thus
more likely to form stars. The influence of the Mach number is
further discussed in Sect. 4.1.

The available observables are a position-position-velocity
cube, its velocity-weighted moments and the power spectra of
these moments. We make two major assumptions about this dat-
acube, namely that the 13CO(J = 1−0) line is optically thin and
that its emissivity only depends on the 13CO volume density.
These assumptions are true within less than 20%, with the ex-
ception of a few lines of sight towards the center of NGC 2024,
which are more saturated, but represent about 2% of the whole
field. Under these assumptions, the position-position-velocity
cube can be seen as a density-weighted velocity field: the spec-
trum obtained for each line of sight results from the projection
of the emission of the matter present along this line of sight, and
moving at various velocities.

The useful moments are the zero-th, first, and second order
moments of the momentum field, W0, W1, and W2, which are
defined as follows in Brunt & Federrath (2014):

W0 =

∫
I(v)dv, W1 =

∫
vI(v)dv, W2 =

∫
v2I(v)dv. (2)

The spectral line intensity, I(v), may have contributions from var-
ious positions along the line of sight. Given our assumptions on
emissivity, and assuming that the natural linewidth is negligi-
ble compared to the overall velocity dispersion, we can describe
these moments in an alternative way:

W0 ∝

∫
ρ(z)dz, W1 ∝

∫
v(z)ρ(z)dz, W2 ∝

∫
v(z)2ρ(z)dz. (3)

The solenoidal fraction can be written in terms of these obser-
vational quantities as follows (see Brunt & Federrath 2014, for
details):

R ≈
 〈W2

1 〉

〈W2
0 〉

 〈W2
0 〉/〈W0〉

2

1 + A(〈W2
0 〉/〈W0〉

2 − 1)

[g21
〈W2〉

〈W0〉

]−1

B. (4)

The A and B factors are functions of the power spectra of W0 and
W1,

A =

(∑
kx

∑
ky

∑
kz

f (k)
)
− f (0)(∑

kx

∑
ky f (k)

)
− f (0)

, B =

∑
kx

∑
ky

∑
kz

f⊥(k)
k2

x+k2
y

k2∑
kx

∑
ky f⊥(k)

,

(5)

where f (k) and f⊥(k) are the angular averages of the power spec-
tra W̃0(kx, ky) and W̃1(kx, ky), respectively.

Brunt & Federrath (2014) introduce a statistical correction
factor, g21, of order unity, which measures the correlations be-
tween the variations of the density and the velocity fields, and is
defined as

g21 =
〈ρ2v2〉/〈ρ2〉

〈ρv2〉/〈ρ〉
· (6)

Brunt & Federrath (2014) show that this may be written as

g21 =

〈(
ρ

ρ0

)2〉−ε
· (7)

The 3-dimensional variance of the volume density, 〈(ρ/ρ0)2〉, can
be derived using the Brunt et al. (2010) method. The exponent ε
is a small, positive constant, which can be obtained as the expo-
nent of theσ2

v vs. ρ power law, i.e., the typical velocity dispersion
in the cloud as a function of volume density. If the density and
velocity fields were uncorrelated, g21 would be equal to 1.

3.2. Implementation

Actual data suffer from several limitations that need to be dealt
with to apply the method described previously. The field of view,
the angular resolution, and the sensitivity are limited. This sec-
tion describes how these issues were dealt with.

3.2.1. Noise filtering

Computation of line moments is sensitive to noise in the line
wings. It is well known that masking the position-position-
velocity cube where the signal stays undetected improves the de-
termination of the centroid velocity and linewidth. To define the
mask containing the pixels detected at high significance, these
pixels are first grouped into continuous brightness islands that
are made of neighbouring pixels in the position-position-velocity
space, whose S/N is larger than 2. The noise level,σ, is measured
outside the studied velocity range (−0.5, 20.5 km s−1). The list
of islands is then sorted by decreasing total flux. The first island
contains about 97.8% of the total signal. The following ones are
small signal clumps that are spatially or spectrally isolated from
this main block and, after about a few hundred islands, we are
left with single-cell islands that are just noise peaks.

While it is easy to visually assess that the first few islands
correspond to genuine signal, it is more complex to determine
the transition to pure noise, as a significant fraction of the total
line flux could be hidden in pixels of faint brightness, at low
S/N. We thus studied the influence of the number of islands used
on R, the solenoidal fraction in the studied cube. This influence
is modest, mainly because over 97% of the signal is located in
the first island. Using up to about 80 islands yields a very stable
value of R with less than 0.1% variation. A steep increase of R is
observed when we enter the noisy domain. We thus used the 80
brightest islands for all other calculations.

3.2.2. Moment computation

After selecting the signal islands in the position-position-
velocity cube, the moments are integrated from −0.5 to
20.5 km s−1. The calculations have to be performed in the center-
of-mass frame of reference of the cloud, which implies deter-
mining the centroid velocity of the cloud in the LSR frame. This
center-of-mass velocity is simply given by

Vc =
〈Wobs

1 〉

〈W0〉
, (8)

where Wobs
1 is the first moment field in the observer’s frame of

reference. W0, on the other hand, is not velocity-weighted and,
therefore, does not depend on the frame of reference. For the
observed field of view, we obtain Vc = 9.16 ± 0.90 km s−1.

The velocity scale in the observer’s frame of reference is
shifted by Vc, before computing W1 and W2 in the center-of-mass
frame of reference:

W1 =

∫
(vobs−Vc) · I(vobs)dvobs, W2 =

∫
(vobs−Vc)2 · I(vobs)dvobs. (9)

The resulting fields are shown in Fig. 4.
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Fig. 4. Top: maps of the 13CO(J = 1−0) field moments in the cloud’s frame of reference. Bottom: maps of the physical quantities directly derived
from each field, with the centroid velocity being simply W1/W0, and the Full Width at Half Maximum (FWHM) velocity dispersion given by
2
√

2 ln(2)
√

W2/W0 – the normalization of the FWHM corresponds to that of a field with purely Gaussian line profiles.

3.2.3. Apodization

Computing the power spectra of the W0 and W1 fields requires to
take the Fourier transform of these fields. Although calculating
the FFT of 2-dimensional fields is an easy task, several numer-
ical artefacts must be taken care of. In particular, the observed
area does not reach the edges of the Orion B molecular cloud in
all directions, as illustrated in Fig. 1. This sharp truncation of
the 13CO emission will create artefacts in the Fourier transform,
owing to the convolution of the true Fourier spectrum by a sinus
cardinal function that oscillates at high frequencies. Apodizing
the field is required to avoid this behaviour. We have chosen to
multiply the intensity by 1−cos(πx/w), where x is the pixel coor-
dinate and w the apodization width. This function goes from 0 to
1 over w pixels. This apodization function is used in Martin et al.
(2015). We keep the region affected by apodization as small as
possible to minimize signal alteration. An apodization width of
about 5% of the smallest dimension of the field (i.e., roughly

25 pixels) was the smallest value that efficiently smoothed out
the high-frequency artefacts. This is consistent as well with the
width determined in Martin et al. (2015).

Once the field is apodized, it must be made square to follow
the isotropy requirements of the method. The square was built
by padding the right side (west) of the observed area with zeros,
since this is the location of the Hii region associated with σOri,
i.e., no signal is detected past the western edge of the field of
view. After this, the Fourier transform is calculated using the
FFT implementation of Numpy 1.8 (Cooley & Tukey 1964).

Apodization is a linear filter of the data, and thus has effects
on the power spectrum at all frequencies. While apodization al-
lows us to clean the spectrum at high spatial frequencies, it also
alters the spectrum at the lowest frequencies. For example, f (0) –
the value of the power spectrum at spatial frequency k = 0 – is di-
rectly proportional to the spatial integral of W2

0 , therefore losing
some signal because of the apodization will reduce the value of
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Fig. 5. Left: power-law fitting of the W0 power spectrum. Upper panel: data (blue crosses), fit result (thick solid line) plotted over the fitted
domain, power law convolved with the Gaussian beam (dotted line) extrapolated to all spatial frequencies, noise model (dashed line). Lower
panel: residuals. The scale in the Fourier space is given in UV distance as for interferometric observations, which enables us to visually relate the
resolution and the telescope diameter. Right: same results, except for the W1 power spectrum.

f (0). The method chosen to keep the good parts of the apodized
and non-apodized spectra was the following: we first computed
the FFT of both the apodized and non-apodized fields, respec-
tively W̃ap and W̃nap, then mixed them smoothly around k = 0
using a narrow (about 10 Fourier-space pixels) 2-dimensional
Gaussian Gmix(k). The resulting Fourier field is

W̃final = Gmix(k) · W̃nap(k) + (1 −Gmix(k)) · W̃ap(k). (10)

The power spectrum thus behaves like the non-apodized spec-
trum at low k, keeping the correct value of the field integral f (0),
and like the apodized spectrum at high k, free of the spectral
parasites created by the sharp edges of the map.

3.2.4. Power spectra computation and fit

The apodized and corrected FFT of the field needs to be trans-
formed into an angle-averaged power spectrum f (k) or f⊥(k).
This is simply done by binning the modulus of the spatial fre-
quencies, and averaging the points found in these radial bins. The
resulting discrete function can then be linearly interpolated into
a continuous function. A critical element in this exercise resides
in the sampling of the spatial frequency axis. On the one hand,
the resulting angle-averaged spectrum should be as detailed as
possible but, on the other hand, a larger number of bins can lead
to empty bins, containing no sampled points at all. As a result,
we used a number of bins of S/1.45, with S the size in pixels
of the square field, so that the size of a bin in the Fourier space
corresponds to slightly more than the length of the diagonal of
pixels in the Fourier space.

Additional observational constraints (noise, beam shape,
etc.) affect the determination of the power spectrum. Following
Martin et al. (2015), the power spectra are fitted with a power
law, modified to take into account the single-dish beam and the
noise. In our case, the beam is modelled as the Fourier trans-
form of a Gaussian of FWHM equal to the cube resolution, i.e.,
23.5′′. This corresponds to about 2.61 pixels. The convolution in

the image space corresponds to a multiplication in the Fourier
space that mostly affects the high spatial frequencies.

The noise is not a Gaussian white noise, because of inter-
pixel correlations and systematics. We therefore use the power
spectra of 30 signal-free channels and average them to obtain a
template of the noise power spectrum. In this case, we use the
fully noisy data cube, not the 80 first signal islands, to have the
same spatial correlations in noise for each channel (with or with-
out signal), which would not be the case with a masked data
cube. The noise template intends to reproduce a systematic be-
haviour, but we can only use a finite number of channels with
random noise. The noise template is therefore smoothed to make
this systematic pattern stand out more. Given that W1 is, just like
W0, a linear combination of the channel maps, the same noise
template is used for both power spectra.

The fit is performed in the log(k)-log( f ) space, so that the
straight line of the power law stands out more. The fitting func-
tion is therefore the logarithm of

10(a·log(k)+b) · G̃beam(k)2 + N · noise(k) (11)

where Gbeam is the Gaussian beam, G̃beam is its (Gaussian)
Fourier transform, and noise is our noise template. The fitted
parameters are a, b, and N. During the fit, the data are weighted
by the inverse of the variances obtained in each bin when com-
puting the power spectrum.

The choice of fitting the power spectrum with a modified
power law implies that the underlying physical processes should
produce a power law. This is indeed the case for the inertial range
of scales in Kolmogorov turbulence, and can be applied as well
to Burgers turbulence (see, e.g., Federrath 2013). However, the
power spectrum of turbulence starts to deviate from a power law
at scales where the energy is injected (low spatial frequencies)
or dissipated (high spatial frequencies). The power spectra com-
puted from our dataset somewhat deviates from a power law at
low spatial frequencies (see Fig. 5). The power law can therefore
only be fitted and then used above a given spatial frequency. The
power-law range starts around ∼5.5′. At high spatial frequencies,
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no deviations from the power law are detected (the fits render the
observations very well). This means that either the dissipation
scale happens at lower angular scale than the resolution of the
observations or it is hidden in the noise.

Once the fit has been performed, the final version of the
power spectra is built using both the fit result and the observa-
tional angle-averaged power spectra, and used for further calcu-
lations. The final power spectrum is a pure power law (without
the beam and noise) above the 1/5.5 arcmin−1 threshold, and is
equal to the linearly interpolated angle-averaged power spectrum
below this threshold. In particular, we enforce f⊥(0) = 0, since
we are working in the cloud’s rest frame.

3.3. Density-velocity correlations

We used the information on the mean line profiles to estimate
the slope ε of the relation between the velocity dispersion and
the local density (see Eq. (7)). Among the lines detected in the
mean spectrum, we selected lines with different spatial distri-
butions (Pety et al. 2017). To trace the low density gas, we se-
lected 12CO(J = 1−0) and HCO+(J = 1−0) since these lines
present very extended emission and have moderate excitation re-
quirements (Pety et al. 2017; Liszt & Pety 2016). We included
13CO(J = 1−0) as our tracer of the bulk of the gas. The some-
what denser and more shielded gas is well traced by C18O(J =
1−0), while we selected N2H+(J = 1−0) for the dense cores.
For these five species, we determined the FWHM by fitting a
Gaussian line profile to the mean profile of the whole map. Only
the 10 km s−1 component, which is present for all five species,
was used for this fit. For N2H+ we used the HFS fit method in
GILDAS/CLASS2, which makes use of the information on the
hyperfine structure.

While these lines are emitted by gas over a wide range of
densities, there is a minimum density under which the line is not
detected because of lack of excitation or because the molecule
is not present in low density gas. It is this minimum density that
corresponds to the velocity dispersion of the line. To derive the
densities associated with the line emission, we adopted three dif-
ferent methods.

For the low density and extended emission tracers, we de-
rived the volume density by comparing the minimum gas column
density where the emission is detected and the resulting size of
the emission regions. This leads to gas densities of a few hundred
cm−3 for 12CO(J = 1−0), HCO+(J = 1−0) and 13CO(J = 1−0).
The emission of 12CO(J = 1−0) is dominated by the low den-
sity regions (Pety et al. 2017). The emission of HCO+(J = 1−0)
is also dominated by low to intermediate density regions, and
comes from the weak excitation regime (Liszt & Pety 2016). In
both cases, opacity broadening is not very significant. We must,
however, consider that the line widths for these tracers are up-
per bounds, owing to the effect of opacity broadening. For these
molecules, we are also limited by the sensitivity of the observa-
tions, so that the densities should be regarded as upper limits.
Hily-Blant et al. (2005) analysed the structure and kinematics of
the Horsehead nebula and derived the density of the extended
region traced by C18O as 3−5 × 103 cm−3. We kept this value
as the typical density traced by C18O. Hily-Blant et al. (2005)
show that higher density regions exist with densities significantly
larger than 104 cm−3. As very few pixels are detected in N2H+

in the region of the Horsehead nebula, we used the catalogue
of dense cores identified by Kirk et al. (2016) in their SCUBA2

2 See http://www.iram.fr/IRAMFR/GILDAS/ for more details on
the GILDAS software.

Table 1. Spectral tracers used in this study, and observed with the
IRAM-30 m telescope.

Line Frequency FWHM log(n(H2)) Ref.
(J = 1−0) ( GHz) (km s−1) (cm−3)

12CO 115.271202 4.08 ± 0.04 2.17 ± 0.3 1
HCO+ 89.188525 3.91 ± 0.08 2.34 ± 0.3 1
13CO 110.201354 2.97 ± 0.03 2.65 ± 0.3 1
C18O 109.782173 2.55 ± 0.01 3.60 ± 0.15 2
N2H+ 93.173764 1.79 ± 0.10 4.10 ± 0.3 3

Notes. The linewidths are derived from these observations, the typi-
cal densities from these observations (Ref. 1) or other works (Ref. 2:
Hily-Blant et al. 2005, Ref. 3: Kirk et al. 2016).

Fig. 6. Variation of the FWHM as a function of the gas density. Each
point refers to the (J = 1−0) spectral line of a different molecule. The
red line shows the least squares fit, with a slope α = −ε = −0.15.

map of the Orion B complex. We found 55 cores associated with
N2H+(J = 1−0) emission. The densities were derived using the
extracted fluxes and effective radii, a uniform dust temperature of
20 K, and assuming spherical geometry for all cores. The mean
density is 104.1 cm−3 with a scatter of about a factor of two. The
temperature of the N2H+ cores was not individually checked,
but it is likely to be lower than 20 K. In turn, this implies an even
higher density of N2H+. Therefore, the derived density should
be regarded as a lower limit.

Table 1 presents the resulting data, which are illustrated in
Fig. 6. The slope α = −ε is derived from a least squares fit
of the variation of the FWHM with the density. We derive ε =
0.15 ± 0.03. The possible systematics on the densities traced by
12CO(J = 1−0), HCO+(J = 1−0), and N2H+(J = 1−0), as well
as on the linewidths of 12CO(J = 1−0) and HCO+(J = 1−0),
all tend to make the power law steeper. Therefore, we keep this
value of ε as an upper limit.

3.4. Estimation of the uncertainties

The computation of uncertainties implies computing the uncer-
tainty of each element of Eq. (4). We start from the average rms
noise level in the data cube, 0.17 K [Tmb]. This enables us to
compute the noise level for the W0, W1, and W2 maps. The com-
putation is straightforward compared to the computation of the
uncertainty of the centroid velocity and linewidth because W1,
and W2 are not normalized by W0, i.e., their noise distributions
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stay Gaussian, whatever the value of W0. Due to the velocity
weighting, the absolute uncertainty increases significantly with
the moment order. However, the relative uncertainties on 〈W0〉,
〈W1〉 and 〈W2〉 are similar, with values ranging from about 10%
for the whole field to 5% for the deepest zooms on NGC 2023
and NGC 2024 (see Fig. 8). The uncertainties on the sums A and
B were explicitly computed according to the error bars described
in Sect. 3.2.4. The relative uncertainty on A ranges from 24% for
the full field to 11% for the deepest zooms, and stays around 13%
for B.

For the overall relative uncertainty, one must not only take
into account the errors of the individual terms, but also the cor-
relation between the different variables. In our case, the different
variables are strongly correlated, since they are all by-products
of the same data cube. Therefore, we chose to use the average
of the various relative errors as a rule-of-thumb estimate of the
overall error. This approach yielded an overall relative error of
13% for the whole field, and 8% for the deepest zooms. We kept
the highest value to allow for a safety margin.

This 13% relative error ∆R/R corresponds to the median
noise-to-signal ratio in the field, σ/Tpeak, which is also of the
order of 13% – but testing with simulated noise whether this is a
coincidence or not is out of the scope of this article.

4. Results

In this section, we first briefly present the derivation of the Mach
number in the cloud, then we compare the obtained power spec-
tra with other results in molecular clouds, and finally, we give
the results of our computation of the solenoidal fraction R in the
Orion B cloud.

4.1. Mach number

According to Brunt & Federrath (2014) and Federrath et al.
(2011), at hypersonic Mach numbers (M > 5) the ratio of
solenoidal and compressive modes does not depend any more
on the type of forcing. It is thus important to also derive the dis-
tribution of the Mach number to be able to interpret the results.

Using the maps of the sound speed derived from 12CO(J =
1 − 0) and dust temperature maps, two different estimations of
the Mach number, Mmax and Mexc, were computed (see appendix
for details). Figures A.2 and A.3 show their spatial distributions
and compare their histograms. The shapes of the histograms of
Mach numbers computed with Tmax and Texc are very similar,
and both show a large tail at high Mach numbers. Table A.1
lists several characteristic values of both distributions. The most
probable value (∼3.5) of the Mach number is much smaller than
the mean or median values (∼6), for both distributions.

Schneider et al. (2013) estimate the average Mach number
to be of ∼8, with approximately 30−40% error, deriving this
value from Herschel dust temperature and CO linewidth. They
also find that Orion B has the highest Mach number of the set of
studied clouds. Our results are compatible with this mean value,
and they also provide the spatial and statistical distribution at
good angular resolution. In particular, the Mach number is much
smaller than the average in the star forming regions NGC 2023
and NGC 2024, below the hypersonic regime.

4.2. Power spectra

When the whole field is considered, the fit yields an exponent
a0 = −2.83 ± 0.02 for the W0 field, and a1 = −2.50 ± 0.07

for the W1 field. When zooming into specific regions of the
cloud (NGC 2023 and NGC 2024, see Fig. 8), the values of
these exponents range from a0 = −2.52 ± 0.08 (widest field) to
a0 = −3.04 ± 0.05 (smallest field), and from a1 = −2.24 ± 0.09
to a1 = −2.81 ± 0.06. While the indices of W1 power spectra
are rarely reported, there are many values of spectral indices for
integrated line intensity maps in the literature, and our a0 values
fall well in the range of spectral indices for observations of CO
emission, dust emission, Hi emission and absorption compiled
by Hennebelle & Falgarone (2012): the values range from −2.5
to −3.2, with most values around −2.7.

To have a meaningful result for the A and B coefficients, the
power-law slope of the power spectra must follow the two steep-
ness requirements mentioned by Brunt et al. (2010). On the one
hand, the spectra should not be too steep, so that the weight of
the low spatial frequencies, for which the available information
is scarce, does not become too large in the A and B sums. On
the other hand, the slopes should be steep enough to avoid di-
vergence of these sums at large frequencies. A slope of a = −3
is at the limit between these two contradicting constraints, since
the divergence of the 3-dimensional sum is only logarithmic. In
our case, the sums are finite, owing to the finite resolution of the
observations, so that with slopes between −2.24 and −3.04, the
sums do not grow too quickly and do not give too much weight
to the low spatial frequencies.

4.3. Turbulence mode ratio

We determined a relative error of about 13% on the calcula-
tion of the ratio R from the position-position-velocity cube. The
correction factor g21 is determined independently, and we as-
sume a range of possible values for g21, the lower limit being
given by our calculations of Sect. 3.3, and the upper limit re-
sulting from the minimum estimate of ε ' 0.05 according to
Brunt & Federrath (2014).

For the entire 13CO field, we obtain the following range of
values:

0.72+0.09
−0.09 < R13CO < 1+0.0

−0.09. (12)

To gain a deeper understanding of the dynamics at stake in
the Orion B cloud, the method was also applied to several sub-
regions of the 13CO map.

First, to check the reliability of the method and the ho-
mogeneity of the field, we applied a sliding square window,
whose side is equal to the smallest dimension of the mapped
area (Fig. 7). This avoids zero-padding the studied field. The re-
sults show that, even though the values are in general somewhat
lower for these sub-fields than for the whole 13CO field, they re-
main marginally compatible with this result, within the estimated
uncertainties.

Second, we searched for systematic variations of the fraction
of solenoidal modes when zooming into specific regions of the
map. In particular, signs of the solenoidal or compressive forc-
ing are expected to appear mainly in regions of low Mach num-
bers (see Sect. 4.1). The zooms were thus performed into the
NGC 2023 and NGC 2024 star forming regions (Fig. 8), where
the Mach number lies between about 3 and 5 (see Fig. A.2),
mostly because the speed of sound is higher in regions of higher
gas temperature, but also because the velocity dispersion is a bit
lower.

Moreover, these regions offer the advantage of presenting
a strongly localized emission. One of the requirements of the
Brunt & Federrath method is to use isolated fields. This is clearly
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Fig. 7. Solenoidal turbulence fraction for sliding square areas with a
width equal to the one of the full map (56 arcmin). The shaded area
corresponds to the g21 uncertainty, while the error bars show the experi-
mental uncertainties due to observational noise. The vertical line marks
the equipartition limit. The map on the left presents the centres of the
square areas for which the calculations were performed, superimposed
on the 13CO(J = 1−0) Tpeak map.

not the case any more when zooming into these specific regions,
and apodization is more necessary than ever to ensure that the
signal falls smoothly to zero on the edges of the field. However,
by using fields for which most of the signal is concentrated near
the center, the effects of apodization are minimized, allowing us
to stay as close as possible to the requirement of an isolated field.
The smaller the field, the lower the value of R: this indicates an
increasing proportion of compressive forcing.

5. Discussion

5.1. Compliance with the method’s assumptions

To apply the Brunt & Federrath method to real observational
data, we were able to overcome several difficulties and sources
of uncertainty.

First, the compliance of the dataset with the requirements of
the method must be checked, namely the isotropy of the studied
cloud, and its isolation. The whole field and the zooms present
two opposite situations. The isolation criterion is well met in the
case of the whole field: we have almost no signal to the west and
to the south of the field, and very diffuse regions to the north
and to the east (see Fig. 4, first column), so that there is almost
no need for apodization to have the signal going down to zero
on the edges of the field. For the zooms, on the other hand, we
are well into the cloud, so that there is signal all the way to the
edges of the field. However, since we study local maxima of the
emission, most of the signal is in the center, which minimizes
the effects of the necessary apodization on the final results (only
7.9% of lost signal for the deepest NGC 2023 zoom, 7.6% for
NGC 2024).

As far as the isotropy criterion is concerned, the 2D projec-
tion is quite obviously isotropic in the case of the zooms, since
the considered fields are square, and much less in the case of the
whole field, in which the region with signal has an aspect ratio
of about 2:1. The third dimension is unknown, and in any case
cannot match simultaneously the dimensions of the whole field

and those of the deepest zooms. However, for the large diffuse
regions like for the bright, compact regions, the dimension along
the line of sight is supposed to be of the order of the dimen-
sions in the plane of the sky. In the case of a zoom on a bright
region embedded in a diffuse one, the signal and, therefore, the
dimension on which it is emitted along the line of sight, is dom-
inated by the bright gas. Therefore, since the zooms are centred
on a bright region, the corresponding datacube behaves almost
as if the bright region was isolated and isotropic. Besides, the
non-angle-averaged power spectra of W0 and W1 do not show
any apparent anisotropy at any scale (except for the windowing
effects). If the power spectra are isotropic in two dimensions,
then statistically we can expect the third dimension to follow
this isotropy as well. Therefore, the isotropy requirement seems
to be fulfilled by our dataset and the method can be applied.

Second, as was mentioned by Brunt & Federrath (2014), the
method is sensitive to values of the power spectra at large spa-
tial scales (low frequencies of the power spectra) owing to the
characteristics of the sums in the parameters A and B. We there-
fore had to find a way to obtain a smooth and reliable func-
tion that would represent an angle-averaged power spectrum at
all frequencies. Once the power spectra were binned and fitted,
we have two versions of the spectra, each with its flaws. The
binned (data only) spectrum suffers from observational effects
(noise and beam) but has also larger uncertainties at low spatial
frequencies. The fitted spectrum, if extrapolated to all spatial fre-
quencies (fit only), can give unphysical results in the lowest fre-
quencies because they lie outside the power law validity range.
For example, if the field had been zero-padded all around to cre-
ate a very large square, such an extrapolation would give very
high values of the spectrum at low frequencies, whereas phys-
ically they should be very low, since the field would on aver-
age be almost empty. These flaws led us to choose the compos-
ite scheme described in Sect. 3.2.4, where the fit result is used
only in the power-law domain, and the low frequencies keep the
angle-averaged power spectrum as it is. Using a different version
of the power spectra leads to quite different final results, as illus-
trated in Fig. 9. However,we note that, even though the absolute
value of the solenoidal fraction R varies, the relative variations
are consistent across scales, whatever the power spectra comput-
ing scheme. Thus, results such as the unusually high solenoidal
fraction at the scale of the whole cloud, or the variations of R
when zooming out of the star forming regions, stay valid and are
further discussed below.

5.2. Physical interpretation

To our knowledge, this work is the first attempt at apply-
ing the Brunt & Federrath method to actual observational data
(Brunt & Federrath 2014; Lomax et al. 2015). The results need
to be compared with what has been done so far on numerical
simulations.

Both Schneider et al. (2013) and our calculations (see
Sect. 4.1 and appendix) show that we are in a context of highly
supersonic turbulence, with a mean Mach number of about 6. We
therefore expect a full mixing of the turbulence modes, so that
the momentum equipartition would predict a solenoidal fraction
of R = 2/3 and a compressive fraction of 1 − R = 1/3. Devia-
tions from this ratio can either be a sign of a specific forcing for
the turbulence in the case of transonic Mach numbers, as shown
in the case of simulations (Brunt & Federrath 2014), or indicate
that an ordered flow is superimposed on top of the turbulent flow.

The global value of R > 0.72 ± 0.09 and the values in Fig. 7
can agree, within the error bars, with the expected value R = 2/3
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Fig. 8. Solenoidal turbulence fraction for zooms on the NGC 2023 and NGC 2024 star forming regions. The shaded area corresponds to the g21
uncertainty, while the error bars show the experimental uncertainties due to observational noise. The upper limit of the plots marks the equipartition
limit. The map on the left presents the areas for which the calculations were performed (solid squares: NGC 2024, dashed squares: NGC 2023),
superimposed on the 13CO(J = 1−0) Tpeak map.

Fig. 9. Comparison of the calculation results in the case of the zoom on
NGC 2024 with three different methods of computing the power spec-
tra: either the power spectra resulting from Fourier-transformed data
are used directly, with a linear interpolation between the points (data
only, blue), or the result of the power law fit at high frequencies is ex-
trapolated to low frequencies to provide a power law throughout the
whole range of frequencies (fit only, green), or a composite version of
the power spectrum is built using the raw data at low frequencies, and
the fit result at high frequencies (data + fit, red). The error bars account
for the observational noise as well as for the g21 uncertainty. The hori-
zontal line marks the equipartition limit.

in the case of equipartition. However, the value R > 0.72 ± 0.09
is still quite high. This can be the sign of a deviation in favour of
solenoidal modes. At high Mach numbers, it would imply that
an ordered solenoidal flow is superimposed on top of the tur-
bulence. And Fig. 4 (Col. 2) shows that there is a large-scale
differential motion in the cloud with the southern part receding,
while the northern part is approaching. This velocity shift could
be the sign of a large-scale rotation of the whole cloud, which
could dominate the smaller-scale motions and be responsible for
the large fraction of solenoidal modes.

The fact that the turbulence in the Orion B molecular cloud
is, on large scales, mostly solenoidal, is in agreement with
the fact that, for its mass, Orion B has a low star formation
rate (Lada et al. 2010). Estimations of its SFE vary, with val-
ues ranging from 0.4% to 3% (Lada 1992; Carpenter 2000;
Federrath & Klessen 2013; Megeath et al. 2016), but all studies
show that the SFE in Orion B is about four times lower than in
the neighbouring cloud Orion A. In general, Orion B’s SFE is
regarded as particularly low, with Megeath et al. (2016) stress-
ing that is has the lowest SFE among all molecular clouds closer
than 500 pc. This remarkable feature of the Orion B cloud could
be partially explained by the solenoidal flows that drive its ve-
locity field, and hinder collapsing motions that could trigger star
formation.

In contrast, Fig. 8 shows a major deviation from the equipar-
tition in favour of compressive motions in two specific regions.
When zooming deeply into the star forming regions NGC 2023
and NGC 2024, we obtain solenoidal fractions as low as R =
0.25. The high fraction of compressive flow in these two regions
most likely results from the infall of matter onto the star forming
region, and/or the expansion of the Hii regions around the young
massive stars (Tremblin et al. 2014a; Geen et al. 2015). The Hii
regions themselves are not observed in molecular tracers, so that
this expansion is detected indirectly through the compression of
the molecular gas at the ionization front of the Hii regions.

For both regions, R grows when zooming out, and will even-
tually reach the average values displayed on Fig. 7. R tends to
decrease when reaching a field size of about 20′. This behaviour
can be due to the fact that the other star forming region is enter-
ing the field of view, since the distance between the two cores
is about 22′, but it can also be related to the geometry of each
region.

In the case of NGC 2023, this size of 20′ also corresponds to
the PDR of the Horsehead Nebula coming into the field and, ow-
ing to the pressure at the photo-dissociation front, it is expected
to be a compressive region (Ward-Thompson et al. 2006), which
is proven by the detection of at least one young star and one
protostar in this region (Megeath et al. 2012).

In the case of NGC 2024, we see that R starts increasing
again after 25′, even though NGC 2023 comes more and more
into the field. The variations of R around 20′−25′ might there-
fore be related to the location of the edge of the Hii region around
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NGC 2024. This Hii bubble exerts a pressure on the surrounding
gas (Tremblin et al. 2014a,b), and this edge is therefore a highly
compressive region that can be seen in the form of an arc north
of NGC 2024 (Megeath et al. 2012). This region has a far lower
surface density of stars that the inner part of NGC 2024, but it
is likely to be younger that NGC 2024 (since it is a consequence
of the expansion of the Hii region), and therefore might have
formed only very young protostars, poorly detected by Spitzer
(Megeath et al. 2016), or no stars yet – but it might become a
very active region in the future.

The sharp contrast between the large-scale solenoidal flow
and the highly compressive flows in the NGC 2023 and
NGC 2024 nebulae is in agreement with the spatial distribution
of star formation observed in Orion B: Lada (1992) observes that
the large-scale SFE in the Orion B cloud is an order of mag-
nitude lower than in the most massive cores, Carpenter (2000)
shows that, at his detection level, 100% of young stars in Orion B
are located in clusters (NGC 2068 in the north, and NGC 2024
in the south), which is unusual among the studied clouds, and
Lada et al. (2013) conclude that Orion B is very ineffective at
forming stars at AK < 2.0 mag, compared to other GMCs.

In a broader perspective, not only do these variations of
R confirm observationally the intuitive link between compres-
sive motions and star formation, as proposed in simulations
(Federrath & Klessen 2012; Padoan et al. 2014), but they also
show that there can be an intra-cloud variability of the solenoidal
fraction, in addition to the inter-cloud one. This shows that the
large-scale environment of the cloud, although it plays a ma-
jor role in driving the turbulence of the molecular cloud, cannot
alone explain the repartition of solenoidal and compressive mo-
tions in the cloud: any denser region created by the density fluc-
tuation in the compressible turbulent gas (e.g., Nolan et al. 2015,
and references therein) can lead, under the effect of self-gravity
or stellar feedback, to the formation of very localized, strongly
compressive regions, even in the context of a mostly solenoidal
flow. There is therefore no universal solenoidal fraction that can
be applied generally to all clouds, and there are even intrinsic
variations of R from region to region within a cloud.

6. Conclusion

From a practical point of view, our work has shown that it is pos-
sible to apply the numerical method of Brunt & Federrath (2014)
to observational data to determine the fraction of solenoidal and
compressive motions in a molecular cloud, using molecular lines
as tracers of the density and velocity fields. We were able to pin-
point the observational requirements to apply this method to a
dataset.

The spatial dynamic range is an important element, mostly
to provide good quality power spectra. The field must be large
enough to provide good statistics at low spatial frequencies, but
it must also have a good spatial resolution, so that the power
spectra have enough points to correct properly for the beam and
noise effects. We found our minimum field size to be of at least
50 independent pixels.

In addition to the spatial resolution, having many indepen-
dent spectral channels is of great help when correcting for the
beam and noise effects. The spectral resolution must also be suf-
ficient to resolve the studied spectral line.

The S/N also proved to be a key element during the calcu-
lations. An average S/N of at least 5 is desirable: our datacube,
which has a mean S/N of 7.8, yielded a relative observational un-
certainty of 13% on the fraction of momentum in the solenoidal

modes, and Figs. 7 and 8 show that this observational uncer-
tainty contributes significantly to the overall uncertainty, and is
even dominant at low solenoidal fractions.

The last point of the computation – the density-velocity cor-
relation – which also significantly contributes to the overall un-
certainty, requires us to use many spectral tracers of various typi-
cal densities. In that case, a spectral survey such as the one of the
Orion B project is invaluable, in so far as all the needed tracers
are available and inter-calibrated.

From a physical point of view, the measurements have shown
that the motions in the Orion B molecular cloud are highly su-
personic, with a mean Mach number of ∼6. However, the Mach
number maps show large variations, with some regions being
only moderately supersonic. These variations are due both to the
variations of the temperature and to the turbulent velocity distri-
bution in the cloud.

The largest scales of the cloud seem to be dominated by a
rotational motion, which can be identified by a high solenoidal
fraction in the flow. At smaller scales, we have shown that the
motion is largely dominated by compressive (infall and/or out-
flow) motions in the vicinity of the NGC 2023 and NGC 2024
star forming regions. The northern edge of NGC 2024 and the
photo-dissociation front of the Horsehead nebula are also likely
to be highly compressive regions, according to our results.
This is in agreement with the observations of the star forma-
tion efficiency in Orion B, which is unusually low at the scale
of the whole cloud, and exclusively concentrated in clusters
(NGC 2023 and NGC 2024).

The example of Orion B also shows that the star formation
efficiency in a molecular cloud does not only depend on its over-
all fraction of momentum in the solenoidal modes of turbulence,
but also on the local variations of this fraction, which can be
driven by internal phenomena such as self-gravity and stellar
feedback.

This method could be applied in the future to study the vari-
ations of the solenoidal fraction between different molecular
clouds, or between different regions or different chemical tracers
within a given cloud. In the case of Orion B, we intend to anal-
yse other data cubes for tracers such as C18O or HCO+, which
trace, respectively, more compact and more diffuse regions of
the cloud, to probe different environments in terms of density
and temperature.
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Appendix A: Mach number estimation

In this appendix, we describe the computations that yielded the
Mach number maps that enable us to estimate if the studied
regions of the molecular clouds were below or above the hy-
personic limit, which is characterized by the equipartition of
momentum in the solenoidal and compressive modes of turbu-
lence. We first compute the speed of sound using two different
temperature maps, then derive the speed of the flow from the
13CO(J = 1−0) position-position-velocity cube, and finally ob-
tain statistics on the 3-dimensional Mach number.

A.1. Speed of sound

The speed of sound in the gas needs to be derived from a tem-
perature map, by means of csound =

√
γ · Rgas · T/mmol, where γ

is the adiabatic index, Rgas the universal gas constant and mmol
the molar mass of the gas.

We have direct access to two temperature maps: the dust
temperature, computed by the Herschel Gould Belt Survey con-
sortium (Schneider et al. 2013), and the peak temperature of the
12CO map, from our IRAM-30 m observations. The dust tem-
perature is expected to be a lower bound for the kinetic temper-
ature, because dust radiates more efficiently than gas. The gas
and dust become coupled only for densities larger than 104 cm−3

(Goldsmith 2001).
For optically thick gas, the excitation temperature Texc is de-

termined (e.g., in Rohlfs & Wilson 2004) by

exp
(

hν
kBTexc

)
− 1 =

 Tpeak

hν/kB
+

1

exp
(

hν/kB
TCMB

)
− 1

−1

(A.1)

where ν = 115.271202 GHz is the frequency of the 12CO(J =
1−0) transition, and TCMB = 2.728 K is the cosmic microwave
background temperature. We assume that the excitation temper-
ature is close to the kinetic temperature of the gas (local thermo-
dynamic equilibrium).

We assume that at very low column density (and there-
fore low Tpeak), the kinetic temperature is underestimated
(since the computation is only valid for optically thick gas).
The dust temperature is supposed to be a lower limit close
to the kinetic temperature of the gas, except when it is not
deemed reliable any more: above a threshold of 60 K, we
deem that Herschel and Planck observations do not yield the
best temperature estimate due to their limited wavelength
ranges (50−600 µm for Herschel). At these temperatures,
12CO(J = 1−0) is usually saturated enough to give a good
result for the excitation temperature, as can be seen from the
12CO(J = 1−0)/13CO(J = 1−0) line ratio which diverges
significantly from the 12C/13C abundance ratio (Pety et al.
2017; Ripple et al. 2013). We can therefore construct a
third temperature map Tmax using the dust temperature and the

excitation temperature of 12CO(J = 1−0): we use the excitation
temperature whenever it is above the 60 K threshold, and in other
regions we use the maximum of the gas excitation temperature
and the dust temperature (Fig. A.1, panels 1 to 3).

When computing the speed of sound from the temperature
map, the nature of the gas comes into play. We considered a
75−25% mixture in mass of molecular hydrogen and helium,
which yields a molecular mass of 2.513 kg mol−1. Since we are
not simply dealing with a mono-atomic or diatomic ideal gas,
the adiabatic index γ of this mixture has to be determined. To
compute γ, we used tabulated NIST values of the calorific ca-
pacities CP and CV of the two gases at an average temperature
of 24 K. The resulting value, γ = 1.66674, is very close to the
value 5/3 that would be expected for a mono-atomic ideal gas,
which could be expected since, at such low temperatures, the
ro-vibrational modes of H2 are frozen.

A.2. Flow velocity

The turbulent velocity dispersion was computed using the ve-
locity dispersion along each line of sight, which can be derived
from the W2 map. We determined the flow velocity dispersion as
u =
√

W2/W0 (Fig. A.1, last panel).
This computation implies two assumptions. First, we assume

that the natural and thermal widths of the lines are negligi-
ble, compared to the turbulent broadening. Second, we neglect
the opacity broadening as well. While it is correct that thermal
broadening has less than 1% effect on the line width, the assump-
tion for the opacity broadening is less obvious. We determined
that the expected correction would be of the order of 10% for the
brightest lines of sight, reducing the width of the lines and there-
fore the Mach number. However, given that the correction would
have been difficult to implement for non-Gaussian lines, as is the
case in our 13CO(J = 1−0) field, and that the correction would
be significant only for a small fraction of the lines of sight, we
left the turbulent velocity field uncorrected.

A.3. Results

The ratio of the turbulent velocity to the sound speed gives us
the Mach number along the z axis. The total Mach number is
M =

√
3Mz, when the turbulence is isotropic. The Mach number

is determined twice, using two maps: the excitation (gas) tem-
perature, and the maximum of dust and excitation temperatures,
as described above. We then compare the results of the two com-
putations (Figs. A.2 and A.3).

To estimate the typical Mach number at the scale of the
whole cloud, we plot the histogram of the obtained maps
(Fig. A.3). The shapes of the histograms are very similar for Tmax
and Texc. Owing to the shape of both distributions, with a large
tail at high Mach number, the most probable value of the Mach
number for both distributions (M = 3.5), is significantly smaller
than the mean and the median values, as shown in Table A.1.
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Fig. A.1. First three panels: speed of sound computed for the estimated excitation temperature of the gas, the dust temperature, and the maximum
of the two previous ones. Last panel: turbulent flow velocity dispersion. We assume that having one or several spectral components along the line
of sight is irrelevant, since one component gives a turbulent velocity dispersion, and two components show a high-velocity shock.

Table A.1. Typical values of the temperature and the Mach number dis-
tribution, for the two computed temperature maps.

Value Tmax Texc Mmax Mexc

Most probable 21.1 22.3 3.5 3.5
Mean 25.5 15.8 6.1 6.5

Median 23.4 15.6 4.8 5.0

Notes. The Texc distribution is truncated below 10 K, to avoid being
biased by the large number of pixels at low Tpeak in 12CO.

Fig. A.2. Mach number maps computed using the two different temper-
ature maps, left using Texc, right using Tmax.

Fig. A.3. Histogram of the Mach number map, for Tmax ant Texc. The
vertical bars show the position of the mean value of each distribution.
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