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ABSTRACT

Context. The ionization fraction in the neutral interstellar medium (ISM) plays a key role in the physics and chemistry of the ISM,
from controlling the coupling of the gas to the magnetic field to allowing fast ion-neutral reactions that drive interstellar chemistry.
Most estimations of the ionization fraction have relied on deuterated species such as DCO*, whose detection is limited to dense
cores representing an extremely small fraction of the volume of the giant molecular clouds (GMC) that they are part of. As large
field-of-view hyperspectral maps become available, new tracers may be found. The growth of observational datasets is paralleled by
the growth of massive modeling datasets and new methods need to be devised to exploit the wealth of information they contain.
Aims. We search for the best observable tracers of the ionization fraction based on a grid of astrochemical models, with the broader
aim of finding a general automated method applicable to searching for tracers of any unobservable quantity based on grids of models.
Methods. We built grids of models that randomly sample a large range of physical conditions (unobservable quantities such as gas
density, temperature, elemental abundances, etc.) and computed the corresponding observables (line intensities, column densities) and
the ionization fraction. We estimated the predictive power of each potential tracer by training a random forest model to predict the
ionization fraction from that tracer, based on these model grids.

Results. In both translucent medium and cold dense medium conditions, we found several observable tracers with very good predictive
power for the ionization fraction. Many tracers in cold dense medium conditions are found to be better and more widely applicable
than the traditional DCO*/HCO" ratio. We also provide simpler analytical fits for estimating the ionization fraction from the best
tracers, and for estimating the associated uncertainties. We discuss the limitations of the present study and select a few recommended
tracers in both types of conditions.

Conclusions. The method presented here is very general and can be applied to the measurement of any other quantity of interest
(cosmic ray flux, elemental abundances, etc.) from any type of model (PDR models, time-dependent chemical models, etc.).
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1. Introduction

The so-called neutral component of the interstellar medium, de-
spite being shielded from EUV (13.6 to 124 eV) stellar pho-
tons able to ionize hydrogen, retains a small ionization fraction
(x(e™) = n(e™)/ny). The ionization mechanism depends on the
type of region: FUV (6 to 13.6 eV) photons ionizing C and S
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in the low Ay surface layer of clouds, or cosmic rays, X rays,
shocks, etc., in the densest parts. As a result, ionization frac-
tions range between ~ 10 in low Ay cloud surfaces and down
to ~ 10~ in dense cores (e.g., |Goicoechea et al.|2009; Draine
2011).

This ionization fraction controls several key aspects of neu-
tral interstellar clouds. It determines the degree of coupling of
the gas to the magnetic field: the neutrals, accounting for most

Article number, page 1 of 29

Article published by EDP_Sciencey, to be cited as PfipS:77dor.ora/10. [05170004-636 17202038047



http://publications.edpsciences.org/
https://doi.org/10.1051/0004-6361/202038040

A&A proofs: manuscript no. paper_RF_ioniz

of the mass of the fluid, are only indirectly sensitive to the pres-
ence of a magnetic field through their friction with the ions that
remain coupled to the field, a process called ion-neutral friction.
This coupling can provide a significant magnetic support against
gravitational collapse of dense cores despite the low ionization
fractions values found there, between 10~ and 1077 (Mestel &
Spitzer||1956; Mouschovias||[1976; Basu & Mouschovias||1994).
The ionization fraction also controls the onset of the magneto-
rotational instability (Balbus & Hawley|[1991)), the main mecha-
nism of angular momentum transport in accretion disks. More-
over, the gas phase chemistry in dense molecular clouds is to a
large extent driven by fast ion-neutral reactions (Herbst & Klem-
perer||1973; |Oppenheimer & Dalgarno||1974). The build-up of
chemical complexity thus depends on the ionization fraction of
the medium. Finally, some common molecular tracers with high
dipole moments, such as HCN and HCO®, have high inelas-
tic collision cross sections with electrons, and their excitation
can be significantly affected by electron collisions for ioniza-
tion fractions > 107> (Black & van Dishoeckl|[1991} [Liszt[2012}
Liszt & Pety|[2016; |Goldsmith & Kauffmann|2017). This makes
the interpretation of their emission (e.g., to estimate gas density)
sensitive to our knowledge of the local ionization fraction .
Direct observational estimation of the ionization fraction in
neutral clouds is difficult, except in very specific regions (e.g.,
Goicoechea et al.[[2009; |Cuadrado et al.[2019] at the dissociation
front in a photodissociation region). Direct estimation of the to-
tal charge accounted for by observable molecular ions in molec-
ular clouds only yields a loose lower limit (e.g., Miettinen et al.
2011)). Indirect methods based on tracers that are chemically sen-
sitive to the ionization fraction have thus been commonly used.
These methods have mostly involved measuring the deuterium
fractionation through abundance ratios involving simple molecu-
lar ions like DCO*/HCO" (Guelin et al.|1977,|1982; Dalgarno &
Lepp|1984; (Caselli et al.[1998) or N,D*/N,H* which is less af-
fected by depletion (Caselli|2002). The idea is that the deuterium
enrichment (defined as H,D*/HY), initiated by the exchange re-
action
H} + HD = H,D* + Hy, (1)
at low temperature, is limited by electronic dissociative recom-
bination of H,D*, and that the resulting ratio is transmitted (with
a known prefactor) to the deuteration fraction of other molecules
such as HCO*. Using such tracers, the ionization fraction is de-
duced either by using approximate analytical formulae repre-
senting simplified networks (Caselli et al.[|[I998; Miettinen et al.
2011} |Caselli|2002), or by adjusting an astrochemical model in-
cluding a full chemical network to the observations, using sta-
tionary chemical models (Williams et al.||1998} [Bergin et al.
1999; |Caselli et al|[2002; Fuente et al.|[2016), time-dependent
ones (Maret & Bergin| 2007; |Shingledecker et al.| [2016)), or
PDR models (Goicoechea et al.|[2009). Despite the variety of
determination methods, using different deuterated molecules,
only very few works have proposed using other tracers than
deuterated species. For instance, [Flower et al.| (2007) proposed
the CcH /CgH ratio as a tracer of the ionization fraction, and
Fossé et al| (2001) have investigated the relationship between
the cyclic-to-linear ratio of Cs;H, and the ionization fraction.
Deuteration-based approaches however suffer from several lim-
itations due to the fact that they depend on other physical or
chemical parameters that need to be determined independently.
The initial deuteration reaction (Eq.[I) is sensitive not only to the
gas temperature but also to the essentially unmeasurable ortho-
to-para ratio of H, (Pagani et al.|1992,201 1} |Shingledecker et al.
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2016). Indeed, the endothermicity of the reaction in the back-
ward direction (192K) is very close to the J=1 to J=0 energy
difference of H2 (170.5K). Then, even a small fraction of o-H2
(J=1) contributes to H2D+ destruction (with a reduced endother-
micity of ~ 20K) and restricts the deuteration process. In addi-
tion, ratios such as DCO*/HCO™ are linked to H,D*/HJ through
reactions with neutral species like CO. The estimated deuterium
fraction is therefore sensitive to the depletion factors of carbon,
oxygen, and nitrogen that are not easy to evaluate (Caselli|2002).
Moreover, deuterated tracers such as DCO* are typically only
detectable in cold dense cores, representing only a tiny frac-
tion of the observable area of a giant molecular cloud (GMC).
Deuteration-based approaches are thus inadequate for an unbi-
ased characterization of the conditions in GMCs as a whole.

Despite the common use of advanced chemical models com-
puting the abundances of hundreds of species, the observed
tracers to which these models are compared to estimate x(e™)
(deuterated molecules such as DCO™) are still those initially
proposed based on analytical reasoning using simplified chem-
ical networks. The wealth of data produced in large chemical
model grids remains largely unexploited. Their exploration of
wide parameter spaces might reveal less intuitive but more effi-
cient tracers. Based on this approach, we propose here a general
and largely automatic method to identify the best observational
predictors of the ionization fraction, when other important pa-
rameters such as the gas density, temperature or H, ortho-to-
para ratio are unknown. We apply this method to propose new
predictors of the ionization fraction as a function of the molec-
ular cloud conditions. We use simple stationary chemical mod-
els with a complete up-to-date chemical network (Roueff et al.
2015)), and use molecular ratios (column density ratios or inte-
grated line intensity ratios) as observable tracers from which we
seek to predict the ionization fraction. We base our investigation
on the observed range of physical conditions and detected trac-
ers in the IRAM-30m Large Program ORION-B (Outstanding
Radio-Imaging of OrioN B, co-PIs: J. Pety and M. Gerin) [ﬂ In
this program, we imaged 5 square degrees towards the southern
part of the Orion B giant molecular cloud over most of the 3 mm
atmospheric window (Pety et al.|2017; |Gratier et al.[[2017} |Ork-
1sz et al.|2017; Bron et al.[2018; [Orkisz et al.|2019; Roueft et al.
2020; |Gratier et al.|[subm.)).

In the context of dense cores, the ionization fraction is linked
with the cosmic ray ionization rate (CRIR) and both are often
studied from the same molecular ratios (although direct tracers
of the cosmic ray ionization rate can also be used in more diffuse
medium, in particular HY, e.g., [Indriolo & McCall|2012;|Le Petit
et al.[2016). In our context of the Orion B giant molecular cloud,
where UV illumination controls the ionization fraction in large
parts of the cloud, we focus here on the question of estimating
the ionization fraction only, independently of the source of ion-
ization. The task of tracing the cosmic ray ionization rate (which
has also been attempted using astrochemical model grids, e.g.,
Barger & Garrod|2020) will be considered in a future applica-
tion of the method presented here.

In this first article, we present a generic method to find the
best tracers of an unobservable physical parameter and apply it
to the search of new tracers of the ionization fraction among the
species that are detectable in the ORION-B dataset. The obser-
vational application of the tracers found here to study the ioniza-
tion fraction in the Orion B molecular cloud will be presented in
a second paper (Guzman et al.|in prep.)).

! Informations and data related to the ORION-B program can be found
athttp://www.iram. fr/~pety/ORION-B/
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In Sect. 2| we describe our general statistical method for de-
termining the best predictors of a given unobservable parame-
ter based on the results of a model grid. In Sect. [3] we present
the models used in this study for the search of ionization frac-
tion tracers. We then present the ranking of observable predic-
tors in Sect. ] For ease of application of our results, we provide
in Sect.[5]analytical fit formulae to deduce the ionization fraction
from each of the proposed best predictors. We finally discuss our
results in Sect. [6]and present our conclusions in Sect.[7]

2. Method
2.1. Principle

Both observable line intensities (or column densities) on the one
hand, and the ionization fraction x(e™) on the other hand, de-
pend on multiple, unobservable physical parameters (e.g., gas
density, elemental abundances, cosmic ray flux, ...). Our goal is
to find reliable relationships between observable quantities and
ionization fraction, despite lacking estimations of these hidden
physical parameters. To do this, we first run model grids cover-
ing the whole possible parameter space. We then use a flexible
regression method to fit x(e™) as a function of one of the po-
tential observational tracers through the whole grid of chemical
models. This means that we treat the effects of the variations of
the hidden parameters as sources of noise on the prediction of
the ionization fraction. Finally, we use a quantitative measure-
ment of the fit quality as an estimate of the predictive power
of each potential tracer. These estimates are used to rank the
tracers and highlight the most powerful predictors of the ioniza-
tion fraction. The fitted models for the best tracers will provide
ready-to-use tools to be applied to observations. The pipeline
tool AutoRank, implementing the procedure described below, is
available at http://autorank.ism.obspm.fr.

2.2. Ranking tracers with Random Forests

Any a priori information could easily be included in the method
by sampling the parameters of the model grid according to a
specific prior distribution. However, we wish to minimize the
amount of a priori information injected in the method and to
avoid making assumptions on the shape of the distributions of
physical parameters (e.g., gas density, elemental abundances,
cosmic ray flux, ...). We thus build a model grid that samples
uniformly the possible range of values (see Sect. [3).

Our model grids provide us with a dataset comprising ion-
ization fraction values and corresponding values of observable
quantities. We will consider line intensity ratios or column den-
sity ratios as our observable quantities in this paper. The hidden
physical parameter values introduce a non deterministic aspect
to the relationship between x(e™) and the observables: models
might have identical values of an observable but different x(e™)
if the underlying physical parameters are different. Learning to
predict x(e”) from a given observable is then a regression prob-
lem, with the uncertainty introduced by the hidden physical pa-
rameters playing the role of noise. Determining the best tracers
of x(e”) is thus equivalent to finding observables for which the
relationship to x(e™) is least affected by this noise (i.e., by the
hidden physical conditions). This means finding the observables
for which the most accurate regression model can be found.

For this regression problem, we choose to use Random
Forests (Breiman|[2001) because their flexibility makes it pos-
sible to fit general non-linear shapes, while their simplicity pro-
vides reasonable computational costs. This makes the method

presented here very general and applicable to finding tracers of
other physical parameters without any assumption on the shape
of the relationship between the tracers and the target parameter.
We will use RF for Random Forest in the rest of the paper. RF
regression models are based on the concept of regression trees
(Breiman et al.|[{1984), where a succession of binary decisions
are made based on the input variables (e.g., x3 < 2 or > 2) and
constant values are predicted in each of the subsets of the parti-
tion that the decision tree defines. While such decision trees are
easily interpretable, they require large tree depths to be flexible
but are prone to overfitting if this depth is too large. RF tackle
this overfitting problem by using the simple idea that multiple
overfitted regression models will, when averaged, give a bet-
ter prediction as long as the errors they individually make are
uncorrelated between models. In a RF, the individual trees are
made as independent as possible by introducing randomness in
two aspects: 1) the building of each tree only considers a ran-
dom subset of the input variables, and 2) each tree is given a
bootstrapped sample (i.e. drawn by random sampling with re-
placement from the original dataset, [Breiman||1996) instead of
the original full sample. This way, the datasets seen by the dif-
ferent trees are independent and each tree only sees a subset of
the dataset (bootstrapped datasets typically contain only 63% of
the points of the original dataset as repetition is allowed). This
provides a very flexible regression model, which retains some of
the interpretability of decision trees. RF have thus quickly be-
come a standard method in Machine Learning (see e.g., Hastie
et al.|2001). In addition, they allow to estimate the generaliza-
tion error of the fit (i.e., the error made when predicting data
not seen during training): as each tree has only seen a random
bootstrapped sample from the data, it is possible to estimate for
each datapoint a partial prediction using only the trees that have
not seen this datapoint during training. As the sample seen by a
given tree is called a bag, these partial predictions are called out-
of-bag predictions (OOB). |Gratier et al|(subm.) also use RF in
the context of the interstellar medium and introduce the method
in detail.

We thus train RF regression models for each observable (us-
ing only one observable at a time) and estimate the accuracy of
the regression models. This accuracy is taken as an estimate of
the predictive power of the observable quantity considered, for
the purpose of predicting x(e™). The different observables can
then be ranked according to this predictive power estimate. The
accuracy of the regression model is estimated with the OOB R?,

R2 -1- SSres

tot

2 — 2
SSres = Z (yfred - yf’”g) and SSi = Z (ytrue _ yfme) ,
i i
where the index i runs across data points (individual model re-

sults), y™ is the true value of ionization fraction (computed by
pred
i

with the sums of squares

the chemical model), y is the OOB prediction value from the

RF, and y"“¢ is the average of the (true) ionization fraction over
the model grid. This coefficient R? gives the fraction of the total
ionization fraction variance (across the full model grid) that the
RF model can explain from the given observable predictor alone
(i.e., it measures the fractional decrease from the initial variance
of x(e™) to the variance of the residuals).

It is thus <1, with 1 representing perfect prediction (zero
residual variance). We note that it can take a negative value when
the model performs worse than predicting a constant value set at
the average x(e™) of the dataset. A value of 0 indicates a perfor-
mance equivalent to this constant prediction of the average. This
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Table 1. Range of physical parameters explored for each of our two
classes of medium: gas density ny, gas temperature Tg,, incident FUV
radiation field intensity G, line-of-sight visual extinction Ay, cosmic-
ray ionization rate , H, ortho-to-para ratio OPRy,, depletion factor and
sulfur gas-phase elemental abundance [S].

translucent medium cold dense medium
ny[cm™] 3x 107 -3x10° 103 — 10°
Teas [K] 15 -100 7-20
Gy 1 - 1000 1
Ay 2-6 5-20
( [s—l] 10—17 _ 10—15 ]0—17 _ 10—1()
OPRy, 0.1-3 1074 -107"
depletion factor 1 1-10
[S] 1.86x 1078 - 1.86x 107 1.86x 108 —1.86 x 107>

R? value is used for the ranking of tracers. For more information,
we also provide below the root mean square error

RMSE = \/ % Z (e =y

where N is the number of chemical models in our grid. The
RMSE is completely univocally related to the R* value, but is
more interpretable in terms of the amplitude of typical errors.
We also provide the maximum absolute error,

true

pred
y[ - yl .

max. abs. err. = max
1

This quantity, estimating the maximum error made by our re-
gression model, is not guaranteed to converge when increasing
the size of the dataset. It should thus not be interpreted further
than being the largest error we observed in our limited-size sam-
ple.

The RF model depends on a few internal parameters (number
of trees, maximum depth of trees, etc.). Their values can affect
the quality of the model and its tendency to overfit. We used a
number of trees in the forest Nyees = 400 and a maximum tree
depth dn,x = 4. The procedure used to select these values is
described in Appendix [A] Our tests show that this optimization
scheme is not critical for our purpose: while the choice of pa-
rameter values does affect the quality of the best fit RF model, it
does not change significantly the ranking of the predictors that
we deduce from it.

3. Chemical models

Here, we use the chemical code presented inRoueff et al.| (2015)
to study isotopic fractionation of deuterium, carbon, and nitro-
gen compounds. Single zone models with fixed density, tem-
perature, visual extinction, radiation field, cosmic ray ionization
rate, ortho-to-para H, ratio, and depletion factors are computed
at steady state.

We consider, for the present study, a chemical network in-
cluding deuterium, and isotopic carbon and oxygen species
where the deuterium, carbon and oxygen fractionation reac-
tions have been introduced following the recent determinations
of exothermicities by [Mladenovi¢ & Roueff] (2017). We intro-
duce in particular D'3CO™. Apart from these specific fractiona-
tion reactions, the chemistry of isotopically substituted species is
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built automatically from the chemical network of the major com-
ponents. The chemical reactions involving one single carbon-
containing reactant and one single carbon-containing product are
duplicated with the same reaction rate coefficient. Simple sta-
tistical assumptions are introduced when two carbon containing
molecules are implied in the reaction. Consider for example the
case of the reaction

CX+CY - CX' +CY/,

taking place with a reaction rate coefficient k. The reactions in-
troduced for the isotopically substituted species are the follow-
ing:

BCX +CY - BCX' +CY’  with k/2,
BCX +CY - CX’' + BCY’  with k/2,
CX + BCY - CX’ + BCY’  with k/2,
CX +BCY - BCX’ + Y’ with k/2,

Bex + Bey - Bex + By’ with k.

Such a procedure leads to an ensemble of 310 species linked
through 8711 chemical reactions.

These models allow us to compute observable column den-
sity ratios for the hundreds of species included. Although com-
monly derived by observers, column densities are not the pri-
mary observable quantities, and we thus also compute line inten-
sity ratios. To do so, we post-process the results of our chemical
models using a non-LTE excitation and radiative transfer model
(RADEX, |van der Tak et al.|2007) assuming a typical linewidth
of 1 km/s (observed linewidths in the Orion B are typically of
a few km/s (Pety et al|2017)). Results based on column density
ratios and based on line intensity ratios will be presented sepa-
rately in the following sections.

It is unlikely that a single tracer will provide a good estimate
of the ionization fraction x(e™) in all possible physical condi-
tions. Either the tracer will lose its relationship with x(e™) in
some conditions, or it might be too weak to be observable in
other conditions. We thus decided to divide the range of possible
conditions into subregions corresponding to the different types
of environments found in GMCs (Pety et al.|2017; Bron et al.
2018)). We focus on two kinds of environments : the translucent
medium and the cold and dense gas, and we derive separate rank-
ings of tracers for these two environments. The range of physical
conditions explored for each of these environments are chosen
based on our previous studies of Orion B and listed in Table ]

In both grids, the gas density and gas temperatures were var-
ied covering the typical ranges for translucent medium (3 x 10* —
3 x 10% cm™3, 15-100 K) and cold and dense medium (10° — 10°
cm™3, 7-20 K). In the translucent model grid, external FUV pho-
tons still play an important role in the chemistry and in control-
ling the ionization fraction. This FUV illumination is controlled
through an external FUV field strength G (see e.g., [Hollenbach
& Tielens||[1999, p. 177) and an extinction Ay representing the
amount of shielding between the FUV source and the gas under
consideration (also used as the depth of the slab when comput-
ing line intensities). We take into account self-shielding of H, by
using the approximate expression of Draine & Bertoldi| (1996)
and introduce also the shielding of CO by H, from Heays et al.
(2017). We consider lower extinctions and higher Gy values in
translucent medium (Ay in the range 2-6, Gy of the external field
in the range 1 - 1000) than in cold dense medium (Ay in the
range 5-20, external Gy set to 1). We explore average to moder-
ately strong FUV illumination values in the low density translu-
cent grid. Regions with both high density high FUV illumination



Emeric Bron et al.: Tracers of the ionization fraction in molecular clouds: 1.

correspond to dense photodissociation regions (PDR), in which
strong chemical and physical stratification on small spatial scale
is critical. These regions would thus require the use of complete
PDR models, such as the Meudon PDR Code (Le Petit et al.
2006). We thus did not explore this type of conditions in the
present study.

Given the uncertainties about the cosmic ray ionization rate
in molecular clouds (Lepp||1992; McCall et al.| 2003} [Indri-
olo et al[2007), we consider the range of value 10~!7 — 1071
s 1. In the cold gas conditions, in order to account for the re-
duced cosmic ray fluxes (Padovani et al|2009), we limit this
range to 10717 — 1076 s~!. As sulfur can be an important con-
tributor of electrons in neutral gas but has a highly uncertain
gas-phase elemental abundance (Agundez & Wakelam| 2013}
Goicoechea et al.|2006)), we explore in both grids values of [S],
the relative sulfur abundance with respect to H, in the range
1.86 x 1078 — 1.86 x 107>,

We also explore ranges of H; ortho-para ratio (OPRy, ) which
impact significantly two reactions: namely, H,D* + o-H, —
HJ + HD (Pagani et al.||1992) where the energy endothermic-
ity is reduced to 61.5 K (compared to 232K with p—H,) and N*
+ 0-H, — NH* + H which is slightly endothermic (~ 44 K),
whereas N* + p-H, — NH* + H is more strongly endother-
mic (~ 170 K), as first emphasized by [Le Bourlot| (1991)). For
this reaction, we follow the prescription of Dislaire et al.| (2012)
which is derived from experimental results. We use higher val-
ues of the OPR in the warmer translucent medium (0.1 — 3) than
in cold dense gas (10~ — 10~"). Finally, cold dense cores of-
fer conditions where molecules can freeze out on dust grains,
depleting the gas phase abundances of elements such as C and
O. In our cold dense medium grid, we thus in addition explore
depletion factors going from 1 (no depletion) to 10 (C elemen-
tal abundance 10 times lower than the reference values) with a
constant C/O elemental ratio value of 0.6 (the elemental abun-
dance of carbon is taken to be [C]= 1.32 x 10™* when there
is no depletion). Other parameters that might have an impact
(although second order compared to the parameters considered
here), such as variations of the metal elemental abundances or
PAH abundance, were not considered in this study. The gas-
phase elemental abundances for metals (relative to H) are taken
to be [Fe]= 1.5 x 1078, [Cl]= 1.8 x 1077, [Si]= 8.2 x 1077,
[F]= 1.8 x 1078, [Ar]= 3.29 x 107°.

For each medium type, a set of 5000 models was run,
sampling randomly and uniformly within the chosen parameter
space. The adequacy of this number of models for our purpose
is ascertained later when estimating the uncertainties on our re-
sults.

Given the variation by orders of magnitude both in the pa-
rameter values and the computed observables, we choose to
work with the logarithm of all quantities. We sampled uniformly
on the logarithm of each parameter within the ranges indicated
above. The method described in Sect. [2|is applied on the loga-
rithm of all quantities (i.e., training RF models using the loga-
rithm of column density ratios or line intensity ratios to predict
the logarithm of x(e™)). Representative error values such as the
RMSE on logarithms are equivalent to representative error fac-
tors on the actual quantity. These corresponding error factors are
given in parenthesis in the result tables of the following sections.

To get rid of possible instrumental, calibration and other
source geometry effects, we choose to work only on ratios of
observable quantities (either column density ratios or line inten-
sity ratios). In the following, we use the term tracers for ratios of
observable quantities.

Table 2. We list here the shorthand names, full quantum number desig-
nation, and frequency of the molecular lines we considered.

Short name  Full quantum numbers Frequency (GHz)
BCoO-0) J=1-J=0 110.201354
Cc0(@(1-0) J=1-7=0 109.782173
HCO* (1-0) J=1-J=0 89.188396
HCN(1-0)0 J=1—-J=0 88.631602
HNC(1-0) J=1—>J=0 90.663568
CN (1-0) N=1,J=3/2,F=5/2->N=0,J=1/2,F =3/2 113.490970
CH(-00) N=1,J=1/2,F=0->N=0,J=1/2,F=1 87.40716
CS (2-1) J=2->J=1 97.980953
SO (3-2) J=3,N=2—>J=2,N=1 99.299870
HCS*(2-1) J=2-J=1 85.347890
CF*(1-0) J=1-J=0 102.587533
H,CS(3-2) J=3,K,=0,K,=3—-J=2K,=0,K,=3 103.040452
DCO* (1-0) J=1—- J 0 72.039354
NoHT (1-0) J=1,F1=2,F=3-5J=0,F1=1,F=2 93.173764

Among all the species computed in our chemical model, we
made a selection of species that are detected in the radio observa-
tions of the ORION-B project and potentially linked to the ion-
ization fraction. Our search for the best tracers is made among
the ratios of these selected species. For the translucent medium
condition, we selected *CO, C!¥0, HCO*, HCN, HNC, CN,
C,H, CS, SO, H,CS, HCS*, CF'. The search for a best ratio
was thus done among 66 possible column density ratios (and
66 line intensity ratios). For dense cold medium conditions, we
considered the same selection with the addition of DCO* and
N,H*. We thus had 91 possible column density ratios (and 91
line intensity ratios) in this case. For line intensities, the exact
transition and frequency considered for each species are listed
in Table @ In the RADEX computations of line intensities, we
account for collisional excitation with electrons (using the ion-
ization fraction computed by the chemical model) for species for
which collisional data with electrons are available in RADEX
(HCO™*, HCN and C,H). We note that for CN, excitation by elec-
trons was not included as in the current version of RADEX, the
collisional data that includes the hyperfine structure of CN does
not include collisions with electrons. We chose to privilege the
fact of accounting for the hyperfine structure here.

4. Tracers rankings

We applied the method described in Sect. [2] to the two chemi-
cal model grids (translucent medium conditions and cold dense
medium conditions) presented in Sect. [3] in order to obtain a
ranking of the selected potential tracers according to their use-
fulness for predicting the ionization fraction.

4.1. Translucent medium

Figure |1| presents the predictive power (estimated as the R? of
a RF fit) of each tracer for the best 20 tracers. The left panel
shows the result when taking column density ratios as observ-
able quantities, and the right panel the results when considering
line intensity ratios. We see that the ranking is similar in both
cases, suggesting that excitation and radiative transfer only have
a moderate effect on the relationship between these tracers and
the ionization fraction. A more complete ranking (covering all
tracers having R?> > 0.5) is given in Tablem (due to their sizes,
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Fig. 1. Ranking of column density ratios (left) or line intensity ratios (right) of observable tracers by order of the predictive power for predicting
the ionization fraction (measured by the R? coefficient), in the case of translucent medium conditions (showing only the first 20). Errorbars of the

R? estimates are computed by cross-validation (see text for explanations). The inset in the left panel shows a zoom on the first five ratios in order

to make the magnitude of the errorbars visible.
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Fig. 2. Ionization fraction versus the best column density ratio, C,H/HCN (left panel), and the best line intensity ratio, C,H (1-0) / HCN (1-0) (right
panel) for tracing the ionization fraction in translucent medium conditions. The model grid is shown as a scatter plot, with the central crowded
regions replaced by PDF isocontours containing 25%, 50%, and 75% of the points. Superimposed are the RF model (red line), the analytical fit
(solid black line, presented in Sect. B, the analytical fit of the 1o~ uncertainty (dashed black lines, presented in Sect. 3, and the bounds of the

validity range of the analytical fit (vertical lines, presented in Sect.[5). The quality estimates of the two models are indicated on the figure.

the results tables of this Section and of Sect. [5]are placed in Ap-

pendix B

In both cases, about ten different ratios are found to be each
able to explain more than 80% of the ionization fraction vari-
ance (R*> > 0.8). We emphasize that this means that an accu-
rate prediction of the ionization fraction is possible from each
of these tracers despite not knowing the values of the 7 physi-

2 Datafiles containing the training RF models and tables of the rank-
ings presented in this section are available at http://www.iram.fr/

~pety/ORION-B/data.html.
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cal and chemical parameters that have been varied in our model
grid (cf. Table . The R? values are slightly lower when us-
ing line intensity ratios rather than column densities ratios, in-
dicating that excitation and radiative transfer effects tend to in-
crease the degeneracy between the ionization fraction and other
unknown parameters, but this effect remains moderate. To illus-
trate the performance of the tracers found with this ranking, we
show on the left panel of Fig. [2] the ionization fraction versus
the best ranked column density ratio (C,H/HCN) in our grid of
models for translucent medium conditions (blue symbols, with


http://www.iram.fr/~pety/ORION-B/data.html
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contours in shades of blue indicating iso-PDF contours encom-
passing 25%, 50%, and 75% of the distribution) and the predic-
tion of the fitted RF model (solid red line), which is found in this
case to explain 95.7% of the ionization fraction variance in our
grid. The remaining scatter around the relationship represents the
effect of ignoring all other parameters (gas density, temperature,
UV field, H, OPR,...). The best ranked line intensity ratio (C,H
(1-0) / HCN (1-0)) is similarly shown on the right panel of Fig. 2]
with the corresponding fitted RF model (solid red line).

In translucent gas, the ionization is still dominated by the ef-
fect of external FUV photons ionizing carbon (and to a lesser
extent sulfur and chlorine), and is slowly decreasing as the total
extinction increases. In the conditions covered by our translucent
grid, we find x(e™) ranging from 2 X 10~*to 2x1077. C,H, which
we find in several of the best ratios, is known to be enhanced in
FUV illuminated environments (Pety et al.|2005}; /Cuadrado et al.
2015;|Guzman et al.[2015; |Gratier et al.|2017} [Pety et al.|2017):
as explained in Beuther et al.| (2008), C,H traces the amount of
carbon not locked into CO, and is thus sensitive to the FUV flux
through CO photodissociation and the presence of C and C* at
a significant abundance level. In our translucent medium model
grid, we indeed find C* to be the main charge carrier and thus
to very strongly correlate with x(e”). H* and H} may also con-
tribute to the electronic fraction in environments where the cos-
mic ionization reaches values above 1071 s~! (Le Petit et al.
2016). However, C*, an open shell ion, is chemically reactive
with various molecules, except H and is at the origin of a
complex chemistry with insertion of carbon atoms. C* itself is
not straightforwardly detectable as its fine structure transition at
158 um requires spaceborne or airborne observations. But we
may expect that molecules involving C* in the initial chemical
steps allow to probe the electronic fraction. Our finding of ra-
tios involving C,H (relative to e.g., HCN, HNC or CN) as good
proxies of the electronic fraction is a natural consequence of the
relevance of C* as one of the main positive charge carriers. The
initial step of C,H formation involves indeed the C* + CH —
C; + H reaction, followed by subsequent reactions with Hy up to
CZHEr , which recombines to form C,H. Molecules such as HCN,
HNC, or CO and its isotopologues, on the other hand, are sat-
urated stable molecules which scale with column density. As
a result, ratios such as C;H/HCN, whose transitions are easily
detectable, offer a convenient diagnostic tool of the electronic
fraction in translucent medium. The electronic fraction is then,
as shown in Fig. 2| (left panel), an increasing function of the
C,H/HCN ratio.

CF* is another proxy of C*, as described in [Neufeld et al.
(2006); |Guzman et al.| (2012), and ratios involving this ion are
also found here to be good tracers of the ionization fraction.
However, this ion is relatively scarce since it involves fluorine,
which has a low relative abundance to H, and has only been
detected in PDR environments so far (detectability issues are in-
vestigated in Sect. [6.2).

In order to estimate the reliability of our results and deter-
mine if our 5000-model grid is sufficient to explore the chosen
parameter space for our purpose, we compute errorbars on the
predictive power estimate (the R* of the RF fit). To do so, we
use 10-fold cross validation: the model grid is randomly split
into 10 parts, and for each of these parts, a RF model is trained
on the other 9 parts and tested on the remaining part which it
has not seen during training. From these 10 estimates of the R?

3 Except in strong PDR environments, where a small fraction of vibra-
tionally excited H, may overcome the endothermicity barrier. Strong
PDR environments are not considered here.

(all made on samples unseen during training), a reliable estimate
of the predictive power on unseen data is made, as well as an
estimate of the standard error on this predictive power. The cor-
responding error bars are also shown in Fig. |1} For most of the
points, the errorbars are smaller than the marker, and the inset on
the left panel presents a zoom on the first five ratios, showing the
magnitude of the errorbars. This shows that the uncertainty in-
duced by the finite size of our model grid in negligibly small and
that our 5000-model grid is sufficient for our purpose. However,
this conclusion should be taken with some caution as it has been
shown that there exists no unbiased estimator of the variance of
a cross-validation estimate (Bengio & Grandvalet|2004)) and that
a naive estimation of this variance tends to underestimate it by a
factor of up to 4 (Varoquaux|2018)).

4.2. Cold dense medium

Figure [3] presents the ranking of the best tracers in cold dense
conditions (cf. Table [I), for both column density ratios (left
panel) and line intensity ratios (right panel). Error bars com-
puted by the cross validation procedure described above are also
shown, confirming that the size of our model grid is sufficient
for estimating the quality of the fits based on each tracer. We
see that the R? values of the best tracers are slightly lower than
in the translucent medium case, indicating slightly stronger de-
generacies with unknown parameters in this case (note that de-
pletion was varied in this cold dense medium, in addition to the
parameters varied in the translucent medium grid). However, we
still find several tracers explaining more than 80% of the vari-
ance in x(e~). The best column density ratio is here found to be
CN/N,H*. The cold dense environments are essentially ionized
through cosmic rays and secondary UV photons induced by cos-
mic rays. Electrons are primarily produced by cosmic ray ioniza-
tion of H, and destroyed in the efficient dissociative recombina-
tion reactions of the various molecular ions. He* ions, produced
by cosmic ray ionization of He, are also particularly efficient in
ionizing the molecular reservoirs, CO, HCN, N,, H,O. This con-
tributes to forming atomic ions, in addition to the H;f molecular
ion resulting from H, ionization and the other stable molecular
ions resulting from proton transfer of H} with stable molecules
giving ions such as H,D*, HCO*, H30%, or N,H". The ioniza-
tion carriers are then shared amongst several different species,
going from the simple atomic ions that do not react with Hj (i.e.,
C*, S*, H") and closed shell molecular ions such as Hj, HCO*,
H;07", and N,H*. Molecular ions are principally destroyed by
dissociative recombination reactions whereas atomic ions rather
react with the present neutral molecules since radiative recom-
bination is not efficient. One can thus expect that molecular ions
are inversely proportional to the electron abundances, as seen
with the CN/N,H™* ratio which is found to increase monotoni-
cally with x(e™) (cf. Fig. [ left panel).

As in the translucent case, we find slightly lower R? values
for the best line intensity ratios than for the best column density
ratio. However, we find a few ratios that have better scores as in-
tensity ratios than as column density ratios. In particular, while
the *CO/HCO™ column density ratio is found to be a poor pre-
dictor of the ionization fraction, the '3CO (1-0) / HCO™* (1-0)
line intensity ratio appears as one of the best tracers. Contrary to
the previous cases, this is entirely an excitation effect. The abun-
dance ratio of '3CO/HCO" is found to be mostly uncorrelated
with x(e™) and mostly constant in the cold dense medium model
grid (ratio of about 103 with a typical scatter of a factor of 2-3).
However, HCO™ and '*CO have strongly different critical den-
sities: ~ 2 x 10° cm™ for HCO™ (in cold dense medium condi-
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Fig. 3. Ranking of column density ratios (left) or line intensity ratios (right) of observable tracers by order of the predictive power for predicting
the ionization fraction (measured by the R? coefficient), in the case of dense cold medium conditions (showing only the first 20). Errorbars of the

R? estimates are computed by cross-validation (see text for explanations).
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Fig. 4. Same as Fig. Qfor cold dense medium conditions.

tions, x(e”) is too low for electron collisions to play a significant
role) in comparison to ~ 2 X 10° cm= for 13CO. In the range of
densities considered in the cold dense medium grid (10° — 10°
cm™?), 13CO excitation is thus mostly at local thermodynamic
equilibrium (LTE) and its emissivity per molecule is thus con-
stant with gas density, while HCO™ is transitioning from the
sub-thermally excited regime to the LTE regime, and its emis-
sivity per molecule thus increases with density. The '*CO (1-0)
/HCO™" (1-0) ratio thus decreases with gas density. On the other
hand, we find the gas density to be very strongly anti-correlated
with x(e”) in these conditions (with a typical scatter of a factor
of ~ 3), as cosmic ray ionization is the dominant source of ion-
ization here and the recombination rates per ion scale with the
gas density. These two effects combine to give a '*CO (1-0) /
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HCO™ (1-0) ratio that increases with x(e™) with a relatively tight
correlation (cf. Fig.[C.4] top right panel).

Fig. El shows the relation between x(e~) and the best column
density ratio, CN/N,H (left panel), and the best line intensity ra-
tio, CF* (1-0) / DCO™ (1-0) (right panel). We see a larger scatter

than in Fig. 2] but a clear relationship is still found.
We note that the classical DCO*/HCO" ratio does not ap-

pear among the best tracers found here for cold dense medium
conditions. This point is discussed in Sect.[6.1]

5. Analytical fit formulas

If possible, we recommend using the RF models described in the
previous section when attempting to estimate x(e~) from one of
the best tracers listed above. However, the provided datafiles are
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dependent on a specific implementation of Random Forests (the
scikit-learn module for Python, Pedregosa et al.|2011)). For
a simpler and more persistent solution (independent of any ex-
ternal software), we provide in this section simple analytical fit
formulae for the best tracers found in Sect. 4! While the RF mod-
els are flexible enough to make the method described in Sect. [2]
generally applicable to any model grid and any physical quantity
we want to find tracers of, the analytical fits provided here use
formulas that have been specifically chosen for the application
presented here (finding predictors of the ionization fraction from
our chemical model grid). There is no guarantee that these same
formulae would perform adequately to find analytical fits with
other model grids and/or another quantity to predict.

5.1. Prediction formulae

We use simple polynomial formulae (working as before on the
logarithm of both the observable ratios and the ionization frac-
tion) to fit the non-linear relationships between the best tracers
found in Sect. 4| and x(e™). This is applied to all tracers which
where found to have R? > 0.5 in the previous RF analysis.

In the cold dense medium conditions, we thus use a simple
polynomial of order 5:

FIMC(x) = ag + a1 x + arx® + a3x® + asx* + asx’,

@)

where x is the log,, of the column density ratio or line intensity
ratio from which we want to predict log,,(x(e7)), f dense(x) is our
fitting function to log;, (x(e™)) in cold dense gas conditiong’} and
the parameters ag to as are our fit parameters. A fit is made for
each of the tracers that had R? > 0.5 (more than half of the vari-
ance explained) in the rankings of Sectiond] The corresponding
fit coefficient values for each column density ratio are given in
Table and the coefficient values for line intensity ratios are
listed in Table

In the translucent medium conditions, x(e”) naturally
reaches a plateau at the fractional abundance of carbon (1.32 X
10~ in our undepleted models). We thus use a modified formula
combining a polynomial of order 5 and a saturation:

ftranslucent(x) — fmax _ loge (1 + e—(ao+a1x+a2x2+a3x3+a4x4+a5x5)) . (3)

The fit parameters here are fi,.x and ag to as. As in the cold dense
medium case, £ () is our fitting function to log,q (x(e7))
in translucent gas conditions. The corresponding fit coefficient
values for each column density ratio are listed in Table [B.5] and
the coefficient values for line intensity ratios are listed in Ta-
ble

The order of the polynomial in these functions is chosen so
that further increasing it yields only marginal increase in R (es-
timated by cross-validation to avoid overfitting). The R? values
found for the best tracers in each case are close to the values ini-
tially found with the RF models, indicating that our analytical
fits are not significantly worse than the RF models, at least for
the high-R? tracers. As an example, Figures [2| and 4| also show
the analytical fit (solid red line) in comparison to the RF model
(solid black line). For a few of the lower R? tracers, the analytical
fits perform significantly worse as can be seen on the tables of
Appendix by comparing the R? values of the RF models with
the R? values of the analytical fits.

5.2. Uncertainty formulae

Finally, a key point is to estimate uncertainties on our prediction
of the ionization fraction. Here, we distinguish two sources of
uncertainty.

Our best analytical fit is determined on a finite sample of
models, so that the fit coefficients are only estimates of the theo-
retical best fit coefficients. Estimating again these fit coeflicients
from a different sample of models (drawn from the same distri-
bution) would result in slightly different values, and these un-
certainties on the fit coefficients in turn imply an uncertainty on
the ionization fraction value predicted by the fit formula at any
given value of the observable quantity (intensity ratio or column
density ratio). In order to estimate this uncertainty on the pre-
dicted value, we proceed by bootstrapping: we repeat the fitting
procedure on 100 bootstrapped samples (drawn from the origi-
nal model grid) and report the standard deviation of the value of
the fit function as its uncertainty.

The left panel of Fig. [5]shows the corresponding uncertainty
(showing the 30 level in dashed curves around the main predic-
tion curve) in the case of the best column density ratio in cold
dense gas conditions (CN/N,H*). We name this uncertainty the
fit coefficients uncertainty to distinguish it from the second form
of uncertainty below. We define the validity domain of our fit
as the range of values of the observable ratio where our best fit
is sufficiently constrained by our finite grid of models for this
fit coeflicient uncertainty to be negligible. In practice, we define
it as the range of ratios where the above-defined uncertainty re-
mains lower than 2% of the predicted value. In the following, we
will thus assume this uncertainty to be negligible inside of this
validity domain and focus on the second form of uncertainties.
The limits of the corresponding validity range are also shown on
the left panel of Fig.[5]as blue vertical lines. Due to the tendency
of high order polynomial fits to diverge quickly outside of the
domain of the fitted dataset, the analytical fit formulae should
not be used outside of the validity range defined here.

The second form of uncertainties comes from the unobserv-
able parameters (density, temperature,...), which induce a scatter
in the relationship between any of the line intensity ratios or col-
umn density ratios and the ionization fraction. Inside of the va-
lidity domain of the fit, this scatter in the residuals is much larger
than the fit coefficients uncertainty, as can be seen on the left
panel of Fig.[3), and is thus the dominant source of uncertainties.
When applying the fit formula to real observations, in the ideal
case where the chemical model used in this paper would be a
perfect model of reality, we would expect the value predicted by
the fit formula to commit a mean squared error equal to the vari-
ance of this scatter of the residuals, and this error represents our
lack of information on the underlying physical conditions. As
can be seen in the previous figures however, this residual scat-
ter varies as a function of the observable predictor (the vertical
scatter is smaller in some regions of the plot than in others). This
residual variance as a function of the predictor can be estimated
by a moving average method (shown in the right panel of Fig.[5]
we used a window of 0.1 dex). In order to provide a simpler way
of estimating this residual variance function, we fitted the simple
analytical function

“

to the squared residuals, thus providing a fit to the local vari-
ance. We note that this function provides a fit to the variance on

g(x) = |bo + by x + byx® + byx® + bax* + bsx®

4 We use the notation log,, for the logarithm in base 10, and log, for
the natural logarithm.
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Fig. 5. Illustration of the two sources of uncertainties for the best column density ratio for tracing the ionization fraction in dense cold medium,
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the fit coefficients (thin dashed red lines representing the 30 level), and the bounds of the validity range defined in the text (vertical blue lines). The
right panel shows the analytical fit (solid black line) and two estimates of the standard deviation corresponding to the residual scatter of the data
points around the curve: the red dotted line presents a moving-average estimate of the local standard deviation, and the dashed black lines shows
our analytical fit of the residual standard deviation. On both panels, the chemical model grid is shown as a scatter plot, with the central crowded
regions replaced by PDF isocontours containing 25%, 50%, and 75% of the points.

the prediction of log,,(x(e™)), and, as previously, x is the log,, of
the observable ratio. The absolute value in this function was cho-
sen because the residual variance is by definition a positive quan-
tity. The best fit coefficients to this residual variance function are
given in Tables [B.5] [B.6] [B.7)and [B.8]in Appendix [B] An exam-
ple of the corresponding residual standard deviation function is
shown in the right panel of Fig.[5] where we compare its moving-
average estimate (dotted red curves around the main prediction
curve) to its squared polynomial fit (dashed black curve), show-
ing in both cases the 30 level, for the best column density ratio
in the cold dense medium case (CN/N,H).

The resulting fits are also presented for the best ratio in the
different cases in Fig.[2]and 4] showing the RF fit, the analytical
fit and the scatter fit. Similar figures for each of the 6 best trac-
ers for both the translucent medium and the cold dense medium
conditions, and for both column density ratios and line intensi-
ties ratios, are presented in Appendix[C] .

6. Discussions
6.1. Traditional ionization tracers

One of the most commonly used ionization fraction tracers is
DCO*/HCO* (Guelin et al.[1977}|1982; |Dalgarno & Lepp|1984;
Caselli et al|[T998). It is used mainly in cold dense cores, where
the temperature is low enough to allow sufficient deuterium en-
richment, and the column density is large enough to make DCO*
detectable. However, our results show that even in the cold dense
gas regime, and despite including DCO" in our list of poten-
tial tracers, the DCO*/HCO" column density ratio is not ranked
among the best tracers of the ionization fraction. In fact, it is
ranked as the 38™ best tracer in dense cold gas conditions, with
a R? of 0.57 only (cf. Table |B.7). This ratio is often deter-
mined using observations of HPCO* as H'?CO™ can be opti-
cally thick in high-column-density lines of sight. We leave this
aspect aside in this discussion by showing that the column den-
sity ratio DCO*/HCO™ itself (however it might be determined
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Fig. 6. DCO* over HCO* column density ratio in our grid of dense cold
gas models (blue points and contours), shown as a scatter plot, with the
central crowded regions replaced by PDF isocontours containing 25%,
50%, and 75% of the points. Our best fit Random Forest model is shown
as a black line. The red dashed contours shows the distributions of the
models with OPRy, < 2.5% 1073,

observationally) suffers from several limitations as a tracer of
the ionization fraction.

The relationship between the DCO*/HCO* abundance ratio
and the ionization fraction found in our (cold and dense) model
grid is shown in Fig. [6] The blue distribution shows the results
of the model grid and the black line our best RF model, with a
R? of 0.57. We see that two main problems limit the usability of
DCO*/HCO™.

First, a large scatter of the ionization values (by up to 3 or-
ders of magnitude) is present at all values of the ratio, despite
having a significant fraction of the distribution tightly located
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Fig. 7. Evolution of the R? performance of the Random Forest predictors
(for translucent gas) when adding noise of constant variance o2, _ to all

line intensities, as a function of the noise level 0pis., for the 3 best trac-
ers for translucent medium (C,H(1-0)/HCN(1-0), C,H(1-0)/'3CO(1-0),
and C,H(1-0)/C'#0(1-0)) and for the four tracers least affected by the
noise (*CO(1-0)/C'80(1-0), C'¥0(1-0)/CF*(1-0), *CO(1-0)/CF*(1-0),
and HCN/CF*(1-0)).

around a clear relationship (the outermost blue contour encloses
75% of the distribution). As a result, the best fit RF model tries
to make a compromise between the tightly located part of the
distribution, and the scattered points at lower ionization fraction
values. We found most of this scatter to be related to variations in
the ortho-to-para ratio of H, (OPRy,), an unobservable parame-
ter whose value remains difficult to estimate in observations of
dense cold cores. For instance, selecting only the models hav-
ing OPRy, < 2.5 x 1073, we see in Fig. |6| (red dashed contour)
that we retain only the unscattered part of the distribution. Thus
the difficulty of obtaining reliable estimates of the OPR of H,
in dense cores limits the use of DCO*/HCO™" as a tracer of the
ionization fraction.

Second, even when selecting the low OPRy, models, we
see that the relationship presents a very steep slope at high
ratio values (low ionization fraction values). As a result, for
DCO*/HCO" ratios above 1071, a range of ionization frac-
tions of more than two orders of magnitude is possible. The ratio
would then only be usable for lower ratios, equivalent to ioniza-
tion fractions larger than 1073, Even if the model grid presented
no scatter at all, a steep slope implies that small observational un-
certainties on the ratio will induce large uncertainties on the pre-
dicted ionization fraction. Thus, relationships with steep slopes
are of limited use.

These different effects combine to make the DCO*/HCO™*
ratio a poor predictor of the ionization fraction, compared to the
best ranked tracers found by our method.

6.2. Detectability constraints

So far, detectability constraints have been ignored. Predictive
power has been tested from noiseless values of column density or
line intensity ratios. However, the different lines considered here
have widely different brightnesses and thus differ in terms of de-
tectability with current instruments. We explore here the effect of
various noise levels on the predictive power of the different line
ratios. We will consider two noise setups corresponding to two
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0.8F— C80(1-0)/CF* (1-0) 4
—— CH (1-0)/HNC (1-0)
— S0 (3-2)/HCS* (2-1)
130 (1-0) / C180 (1-0)
0.6 i
o~
S
0.4r -4
0.2 -4
il 1 I . 1 Lol 1 Lol 1 Lol
0.0%%=2 1071

S/N

Fig. 8. Evolution of the R? performance of the Random Forest predictors
(for translucent gas) when adding noise of constant signal-to-noise ratio
to the line intensities, as a function of the S/N, for the 7 best tracers for
translucent medium.

observation scenarios: the case of one constant noise level for all
lines, corresponding to the typical case of a line survey where
faint lines are detected with a lower signal-to-noise ratio (S/N)
than bright ones, and the case of a fixed S/N for all lines, corre-
sponding to observations being designed to reach a set S/N for a
few desired lines. These two cases correspond to the two oppo-
site extremes of possible observation scenarios and will give us
a general overview of the possible impact of noise on the perfor-
mance of the tracers. In both cases, synthetic noise is added to
the line integrated intensity values and we consider the S/N on
the integrated intensity and not the peak intensity. All noise and
S/N values quoted are for individual lines, not for line ratios.

In both cases, in order to measure how the predictive power
(measured as the R? value) is affected by noise, we perform a
modified cross-validation. The model grid is randomly split in
ten parts. For each of these tenths and for each line ratio :

1. A RF model is trained from the other nine parts of the model
grids, without any noise added.
2. The trained RF is tested on the tenth under consideration,
with added noise (either with a constant noise variance o-ﬁ vise
for all models and all lines, or with a constant S/N for each
model and line). Since the RF models take the log,, of the
intensity ratio as input and since the addition of noise can
produce negative values, we only apply the RF model when
both line integrated intensity values are above 1 o. Other-
wise, we do not use the RF model and simply take the aver-
age ionization fraction value of the grid as our prediction.

Finally, we take the average R” value obtained over the ten noisy
tests as the predictive power of the tracer under noisy conditions.
We thus avoid estimating R> from datapoints that have been seen
during training, and we estimate the predictive power of a model
trained on noiseless data when applied to noisy data (as would
be the case when applying the results of this article to real obser-
vations).

The results for the translucent medium grid, for a few pos-
sible line ratios, are presented in Fig.[7]and 8] Figure[7] presents
the scenario of a constant noise level o ;s for all lines and all
models, and shows how the R2 of the prediction from different
line ratios decreases when the noise level is increased. We show
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Table 3. Impact of adding noise to the line intensities on the predictive
power R? (for translucent medium), measured by the noise level oy (in
a constant noise level situation) and the signal-to-noise ratio S/N;,, (in
a constant S/N situation) for which R? reaches one half of its value in

. 2
the absence of noise R(“oiseless).

Line intensity ratio R(Zmiseless) lay) S/Ni»
K.km/s

CHA-0)/HCN (1 -0) 093 455x107° 1.64
C,H(1-0)/3CO1-0) 092 5.00x1073 1.61
C,H(1-0)/C%0 (1 -0) 092 522x107° 1.57
C80(1-0)/CF*(1-0) 089 1.12x1072 1.61
C,H(1-0)/HNC (1-0) 0.87 235x107% 1.58
SOB3-2)/HCST2-1) 085 7.53x107° 1.58
BCcoa-0/CB0O@1-0)| 085 430x102% 297
SOB-2)/CH(-0) 0.80 2.18x10™* 1.5
CGHA-0/CN{-0) 0.80 226x107 1.60
C,H(1-0)/HCO* (1-0)| 0.78 2.70x1073 1.57
HCN (1 -0)/CF* (1-0) 077 817x1073 1.79
HCO*(1-0)/CF*(1-0)| 077 7.77x1073 1.62
HNC (1 -0)/CF*(1-0) 077 4.67x1073 1.61
BCO(1-0)/CF* (1-0) 0.76  995x 1073 1.74
CN(1-0)/CF*(1-0) 075 532x1073 1.90
H,CS(3-2)/C,H(1-0)| 075 1.00x107> 1.54
SOB-2)/CF*(1-0) 0.74 5.16x10™* 1.55
CS2-1)/SO(3-2) 070 4.19x10™* 1.64
CH@A-0)/CF*(1-0) 069 9.78x10™* 1.74
CS2-1)/C,H(1-0) 069 4.52x10™* 1.57
SOB3-2)/CN(1-0) 0.67 2.06x10™* 1.53
SO (3-2)/HCN (1-0) 0.66 1.89x10™* 1.57
HCS*(2-1)/C,H(1-0)| 0.64 833x107° 1.57
HCN (1-0)/HNC(1-0)| 064 338x1073 2.18
SO3-2)/BCo (1 -0) 063 1.65x10™* 1.54
H,CS(3-2)/CF* (1-0) 059 1.00x107° 1.54
CS2-1)/HCS*(2-1) 0.58  3.39x107° 2.00
C80((1-0)/CN(1-0) 0.56 2.09x107%2 1.75
SO (3-2)/HNC (1-0) 0.53 833x107° 1.58
HCO* (1-0)/CN (1 -0) 053 248x1072 194
SO(3-2)/C®0(1-0) 0.51 7.66x107° 1.57
CS2-1)/CF*(1-0) 0.50 893x10™* 1.57

only the three best line ratios (according to the noiseless rank-
ing of Tab.[B.2): C,H (1-0) / HCN (1-0), C,H (1-0) / 3CO (1-
0), and C,H (1-0) / C'80 (1-0), and the four tracers found to
be the least sensitive to noise. We define the tracers least sensi-
tive to noise as those having the highest o1, among tracers with
Rioiseless = 0.7, thus giving a compromise between a good fit
quality (high Riiseless) and a slow decrease with increasing noise
level (high o12). The four best ratios found according to this
definition and shown on the figure are '3CO (1-0) / C'*0 (1-0),
C'30 (1-0) / CF* (1-0), 3CO (1-0) / CF* (1-0), and HCN (1-0) /
CF* (1-0). We see that the best three tracers, all including C,H,
have their predictive power decreasing sharply at a relatively low
noise level (their R® decreases by 50% at oppise ~ 5 X 1073
K km s7!). This is due to the relatively low brightness of the
C,H line in translucent conditions (median integrated intensity
of ~ 7x 1073 K km s~! in our translucent medium grid). In com-
parison, some line ratios built from brighter lines, despite a lower
R? on noiseless data, are found to perform better in the presence
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Fig. 9. Evolution of the R? performance of the Random Forest predictors
(for cold dense gas) when adding noise of constant variance o2, to
the line intensities, as a function of the noise level o, for the 3 best
tracers for cold dense medium (first three curves) and for the four tracers

least affected by the noise (next four curves).
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Fig. 10. Evolution of the R? performance of the Random Forest predic-
tors (for cold dense gas) when adding noise of constant signal-to-noise
ratio to the line intensities, as a function of the S/N, for the 7 best tracers
for cold dense medium.

of noise : the R? for the '*CO (1-0) / C'30 (1-0) ratio decreases
by 50% at ooise ~ 4 X 102 K km s~! (C'®0 (1-0) has a me-
dian integrated intensity of ~ 3 x 107! K km s~! in this grid),
the C'30 (1-0) / CF* (1-0) ratio has its R* decreased by 50% at
Onoise ~ 1072 K km s~! (CF* (1-0) has a median integrated in-
tensity of ~ 1.2 x 1072 K km s~! in this grid). We note, however,
that ratios built from CF* (1-0) actually only perform marginaly
better than the best ratios involving C,H at high noise levels (see
Fig. [7) due to the low brightness of CF* (1-0). For a more ex-
haustive comparison of the line ratios, Tab. [3| gives for each line
ratio the noise level oy, at which the R? is decreased by half.

Figure([8|similarly shows the results for the scenario of a fixed
S/N for all lines and all models, still in the case of translucent
medium conditions. The variations of the R* of the prediction
with the S/N are shown for the best seven tracers (according to
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the noiseless ranking of Table [B.2). In this scenario, we find as
expected that the predictive power drops at a S/N of order unity.
The only exception is the '*CO (1-0) / C'30 (1-0) ratio, which
decreases slightly earlier. This is due to this ratio spanning a rela-
tively small range of values in our grid of models (approximately
one order of magnitude) while the other line ratios span ranges of
four to six orders of magnitude. As the ionization fraction spans
a range of values of 2.5 orders of magnitude in the grid, this im-
plies that the relationship between the ionization fraction and the
13CO (1-0) / C'30 (1-0) ratio has a much steeper slope than for
the other line ratios. A steep slope then implies that small errors
in the line ratios result in large errors in the predicted ionization
fraction. As a result, the 1>CO (1-0) / C'30 (1-0) ratio requires
significantly higher S/N than the other line ratios. Similarly to
o172, we define S/Nj/, as the S/N value at which R? is half of its
value on noiseless data. The S/N;, values for all line ratios are
also given in Table 3]

The results for dense and cold medium conditions are simi-
larly shown in Fig. 9] and [I0] and Table [ In the case of a con-
stant noise level, we find that the R?> drop generally occurs at
higher noise levels than in the translucent medium case, as ex-
pected because the lines are brighter in the cold dense medium
due to higher column densities. Figure 0] shows the decrease of
R? with o for the best three dense gas tracers (according to
the noiseless ranking of Tab. @]), and for the four ratios least
sensitive two noise (according to the same definition as previ-
ously). We note that 13CO (1-0) / HCO™ (1-0), the second best
ratio on noiseless data (therefore already shown on the figure),
has also the highest 071, value among ratios with Rpgiseless > 0.7,
so that we show the next four ratios least sensitive to noise on
the figure. These four ratios are found to be C'®0 (1-0) / HCO*
(1-0), HCO™ (1-0) / CN (1-0), SO (3-2) / CN (1-0), and HCN
(1-0) / CN (1-0). The o/, values for all line ratios are listed in
Table[d] When considering a constant S/N scenario for the dense
cold medium case, we again find that the R drop occurs at a S/N
value of order unity, as shown in Fig. [_115} The S/Nj, values for
all line ratios are listed in Table 4

When interpreting the results of this study, one must keep in
mind that the decrease in R2 in our two scenarios (constant o"pojise
or constant S/N) does not come from the same effect. In the con-
stant opeise SCENArio, at a given oise level one part of the grid
has undetected or very low S/N values for the ratio under con-
sideration, while the other part has high S/N. The R? decrease
is indicative of the growing fraction of the parameter space with
undetected/low S/N. As a result, even when finding a low overall
R?, there might remain a fraction of the parameter space were the
predictor remains very good (usually, high column density, high
volume density, high temperature,...), which we did not charac-
terize here. In the constant S/N scenario on the other hand, the
S/N is by design constant over all models, independent of the
physical parameters. The decrease in overall R? is then more rep-
resentative of the decrease in predictive power at any point in the
parameter space. As a result, a ratio with a low 071, value might
still be usable in real observations with a higher noise level but
would be restricted to high brightness regions of GMCs (in the
corresponding lines), while a ratio cannot be used at all in obser-
vations with S/N significantly lower than its S/N,, value.

6.3. Chemical model reliability

Independently of the statistical method that we present in this
article, the results obtained rely on the chosen chemical model
and its limitations. Previous works on ionization fraction tracers
have mostly used stationary-state results of single-zone chemical

Table 4. Impact of adding noise to the line intensities on the predictive
power R? (for cold dense medium), measured by the noise level o),
(in a constant noise level situation) and the signal-to-noise ratio S/N;»

for which the R? reaches one half of its value in the absence of noise
2
(noiseless)*

Line intensity ratio R(Znoise]ess) lay) S/Nijp
K.km/s

CF* (1 -0)/DCO* (1-0) 0.86 420x107° 1.64
3CO (1 - 0)/HCO* (1 -0) 086 6.07x107" 1.69
CN (1 -0)/N,H" (1 -0) 0.86 3.93x1072 1.60
Co,H({1 -0)/N,H* (1 -0) 086 3.78x107* 1.64
HCO* (1-0)/CF* (1-0) 0.84 631x1073% 1.67
C,H(1-0)/HCN (1-0) 0.83 4.18x10™* 1.68
13CO (1 -0)/DCO* (1 - 0) 081 236x1072 1.62
C,H (1 -0)/HNC (1-0) 081 399x10™* 1.68
C'®0 (1 -0)/DCO* (1 -0) 0.81 1.93x 1072 1.63
CH (1 -0)/DCO* (1-0) 0.80 4.00x10™* 1.58
CF* (1-0)/NH" (1-0) 0.80 4.92x1073 1.70
C,H (1 -0)/HCO* (1 -0) 0.79 541x10™* 1.58
CN (1 -0)/DCO* (1 -0) 078 9.57x1073 1.58
CB0(1-0)/HCO"(1-0)| 076 429x107' 1.69
HCO*(1-0)/CN (1 -0) 075 470x1072 1.59
HCN (1-0)/CN (1 -0) 075 3.69%x107% 1.78
HNC(1-0)/CN (1 -0) 0.75 3.52x107% 1.83
SOB-2)/CH-0) 0.73 575x10™* 1.58
SOB3-2)/CN(1-0) 070 3.87x1072 1.59
CS2-1)/C,H(1-0) 0.70 578 x10™* 1.56
SO(3-2)/3CO (1 -0) 069 692x107! 1.78
H,CS(3-2)/CH(1 -0) 0.68 3.76x10™* 1.55
3CO(1-0)/N,H" (1 -0) 0.65 998x1072 1.65
SO3-2)/CF*(1-0) 0.64 646x107° 1.64
CS2-1)/CN ({1 -0) 0.64 239x1072 1.59
CH({1-0/CF"(1-0) 0.64 3.54x10™* 1.65
HNC (1 - 0)/DCO™* (1 -0) 0.60 575x1073 1.61
SO (3-2)/HNC (1 -0) 058 293x107' 1.78
SO (3-2)/HCN (1-0) 0.57 259x10°! 1.81
H,CS (3-2)/CN(1-0) 0.56 526x107° 1.58
HCN (1 - 0)/ DCO™* (1 -0) 0.56 425x1073 1.64
C,H(1-0)/"3CO1-0) 0.56 7.15x10™* 1.60
SO3-2)/CB0O (1 -0) 056 3.61x107" 1.68
C®0(1-0)/N,H* (1 -0) 0.56 6.34x1072 1.68
HNC (1 -0)/N,H* (1-0) 055 6.29x107%2 1.71
HCS* 2-1)/C,H({1 -0) 054 1.95x10™* 1.57
HCO™* (1 - 0)/HNC (1 -0) 054 197x107' 1.67
CH(1-0)/CBO01-0) 053 7.32x10™* 1.63
CS2-1)/CF*(1-0) 052 583x107% 1.59
HCO* (1 -0)/DCO* (1-0)| 0.52 1.63x1073 1.99
HCO* (1 -0)/HCN (1 -0) 0.51 1.75x 107" 1.70
CS2-1)/HCS*(2-1) 051 499x10™* 1.97

models (although some works have used time-dependent mod-
els, e.g., [Maret & Bergin|[2007; Shingledecker et al.[2016)). As
these previous studies have been mostly limited to deuteration-
based tracers, the focus of the present article has been on high-
lighting the non-deuteration-based tracers that can be found for
the ionization fraction from similar chemical models. We discuss
here the impacts of our model’s limitations on our results.

Article number, page 13 of 29



A&A proofs: manuscript no. paper_RF_ioniz

Our single-zone model cannot include a detailed treatment of
UV radiative transfer through the cloud. While most photodisso-
ciation rates can be simply estimated based on an assumed op-
tical depth of dust protecting each model from UV photons (pa-
rameter Ay in our models), species such as H,, CO and its iso-
topologues can be protected from photodissociation by self- or
mutual-shielding. While self-shielding of H, and mutual shield-
ing of CO by H; are included in our model using approximations
(Draine & Bertoldi|[1996; |[Heays et al.[|2017), mutual shielding
of 1*CO and C'0O by H, and CO are not included. As a re-
sult, in our translucent medium models where photodissociation
by external UV photons still plays an important role, we expect
the abundances of the rarer CO isotopologues to be less reliable
than the other species. We note that the observations of '3CO
and C'80 in our ORION-B dataset indeed present specificities
(systematic excitation temperature differences with '>CO, |Bron
et al.[2018; Roueft et al.[2020) that remain unexplained even by
more complex 1D PDR models.

The only explicit surface reaction in our chemical model
is H, formation, however we account for the freeze-out of CO
through our depletion parameter. The list of species that we con-
sider as possible tracers has been restricted to species that are
not strongly affected by surface chemistry beyond the depletion
effect. Extension to more complex molecules would require a
chemical model including a more complete treatment of surface
chemistry.

Another source of uncertainties comes from the experimen-
tal or theoretical estimates of the reaction rate coefficients used
in our chemical network. While we did not directly perform a
sensitivity analysis of the reaction rate coefficients, our model
grids include temperature variations which subsequently impact
the reactions rate coefficients through their temperature depen-
dence. This is especially true for the important dissociative re-
combination reactions which display significative temperature
dependences. Temperature is then considered as an unobserved
parameter when searching for good tracers of x(e™). The dis-
covery of strong relationships between some of the ratios and
x(e”), despite temperature variations in the grid, thus indicates
that these relationships are to some extent robust to the reaction
rates. A careful analysis of the magnitude and correlations of
model uncertainties resulting from reaction rate uncertainties in
the chemical network would deserve a separate study.

Time-dependent effects are expected to be more important
in cold dense medium conditions than in translucent medium
conditions as photochemistry has shorter timescales in the lat-
ter case. Time-dependent effects that result from the time evolu-
tion of some physical parameter (e.g., density and temperature
during the contraction of a core) while the chemistry follows in
a quasi-stationary way are in part accounted for in our models
by exploring a large range of the various physical parameters
that can be subject to variations (see Table [T)). In addition, the
progressive freeze out of CO on dust grains is accounted for by
considering a range of depletion factors for carbon and oxygen.
Similarly, the slow evolution of OPRy, in cold gas can keep parts
of the chemistry (deuterium chemistry, nitrogen chemistry) in a
time-dependent evolution that depends mainly on the evolution
of OPRy, . This is also in part accounted for by exploring a large
range of OPRy, values in our models. The tracer-finding method
presented in this article will be applied to time-dependent chem-
ical models in a future study.

The final and most important limitation of our model is that
it does not include a spatial dimension : gas at a single value of
density, temperature, etc. is assumed to be exposed to a given
radiation field and protected by a given column density. As a re-
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sult the possibility that different emission lines originate in sep-
arate layers of gas on the line of sight is completely neglected.
Variations of the physical conditions along the line of sight can
indeed have an important impact on the observables (e.g., Lev-
rier et al/2012)). This limitation could be important both in the
translucent medium where physical and chemical gradients are
present due to the progressive extinction of the external UV field,
and in dense cores with density and temperature gradients. As a
result some caution must be exercised when choosing the line
ratios to consider, ratios involving two species expected to emit
in completely different regions should be avoided. For instance,
the C,H (1-0) / NoH* (1-0) that is found as the fourth best line
ratio in dense cold medium should be avoided : C,H is known to
be a tracer of UV illumination and thus more likely to be emitted
at the external surface of a given clump, while N,H* is abundant
in the inner regions of the core where CO is already significantly
depleted. An application of our method to 1D PDR models to
better account for this effect in translucent medium conditions
will be carried out in a future work.

6.4. Parameter PDF in the model grids

In the model grids used in this study, we sampled uniformly (in
logarithm) for the values of the unobservable physical conditions
(gas density, temperature, UV field, etc.) in an hypercube defined
by lower and upper bounds for each of the parameters. The re-
sults of our ranking method will depend on this assumed PDF
(probability density function) for the physical conditions in the
interstellar medium (ISM). We made here the choice of making
the minimal assumption: knowing only reasonable lower and up-
per bounds on each of the parameters, the uniform distribution
is the maximum entropy PDF (i.e. the PDF that best represents
our assumed state of knowledge). As a perspective, if more a pri-
ori knowledge is available, then more accurate assumptions for
the PDF (in particular for the correlations between the different
physical parameters) could reveal additional tracers.

We note that this assumption of a uniform PDF over a max-
imum support (in the sense that any more accurate PDF would
have almost all of its weight enclosed in this support) makes it
likely that any tracer found to have a very good relationship with
the ionization fraction would keep a strong relationship for more
accurate PDF choices (if the relationship is strong over the full
hypercube, it should with high likelihood stay strong on sub-
regions of this hypercube). In this sense, we expect the tracers
found here to remain reliable, but a more accurate PDF choice
might strongly increase the performance of some tracers found
here to perform poorly and thus reveal additional tracers of the
ionization fraction. This argument remains however qualitative
as pathological cases of PDF might be constructed that would
radically change the rankings of the tracers.

As a result, the precise rankings presented in this article
could slightly change, but we expect the good tracers highlighted
by these ranking to be reliable for more realistic PDFs of the
physical conditions in GMCs.

6.5. Final recommandation

Based on the limitations discussed above (detectability and
model reliability), we recommend the use of the following in-
tegrated line intensity ratios to trace the ionization fraction.

— In translucent medium conditions, we recommend the use
C,H (1-0) / HCN (1-0), CoH (1-0) / HNC (1-0), or CoH (1-0)
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/ CN (1-0). If sensitivity is an issue, HCN (1-0) / CF* (1-0)
can sometimes perform as well as the previously listed ratios.

— In cold dense gas conditions, we recommend the use of CF*
(1-0) / DCO* (1-0), *CO (1-0) / HCO* (1-0) or CN (1-0) /
N,H* (1-0) if detectability is not an issue for these species,
and of *CO (1-0) / HCO* (1-0) or C'*0 (1-0) / HCO* (1-0)
otherwise.

This list is of course not exhaustive, and other ratios can give
satisfactory predictions (see Tables[3] and [ if the species listed
above are not available.

In translucent gas conditions, this recommendation is based
on the following points. After eliminating rarer CO isotopo-
logues based on our discussion of mutual-shielding effects
on selective photodissociation in low/moderate Ay regions (cf
Sect. [6.3), and eliminating ratios involving sulfur species that
were found to require unreasonably low noise levels of 107 —
107 K km s7!, the three remaining best line intensity ratios are
C,H (1-0) / HCN (1-0) and C,H (1-0) / HNC (1-0) and C,H (1-
0) / CN (1-0). If noise sensitivity is critical, the tracer found to
have the best predictive power at high noise levels is found in
Sect. to be HCN (1-0) / CF* (1-0) but is negligibly better
than the three previously mentioned at high noise levels.

In cold dense gas conditions, the three best ratios are CF*
(1-0) / DCO* (1-0), *CO (1-0) / HCO*,and CN (1-0) / N,H*
(1-0). If noise sensitivity is critical, we found in Sect. [6.2] that
the ratios with the best predictive power at high noise levels are
13CO (1-0) / HCO* and C'80 (1-0) / HCO™* (1-0).

7. Conclusions

In this paper, we present a general statistical method to find the
best observable tracers of an unobservable parameter based on a
grid of models spanning the range of possible values for all the
unknown underlying physical parameters (e.g., gas density, tem-
perature, depletion, etc.). Our method estimates the predictive
power of each potential observable tracer by training a flexible,
non-linear regression model (a Random Forest model, making
no assumption on the non-linear shape of the relationship to be
found) on the task of predicting the target quantity from each of
the potential tracers. The fit quality on test data, measured as the
R? coefficient by cross-validation and out-of-bag estimation, is
used to rank the potential tracers by order of predictive power.

In the context of our recent studies of the Orion B GMC (Pety
et al.|[2017; |Gratier et al.|[2017; |Orkisz et al.[2017; Bron et al.
2018; [Orkisz et al.|[2019), we have applied this method to the
important astrophysical question of tracing the ionization frac-
tion in the neutral ISM, with the goal of being able to probe its
variations across a whole GMC, from its translucent enveloppe
to its dense cores. We considered grids of single-zone, station-
ary state astrochemical models exploring wide ranges of values
in gas density, temperature, external UV field, Ay on the line of
sight, cosmic ray ionization rate, ortho-to-para ratio of Hy, de-
pletion factor, and sulfur elemental abundance. For a finer ex-
ploration of the possible conditions, we considered two grids
corresponding to translucent medium conditions and cold dense
medium conditions respectively, based on the different types of
environments found in the Orion B GMC (Pety et al.|2017; |Bron
et al.|2018)).

We considered successively column density ratios and line
intensity ratios as potential tracers, focusing on species observ-
able in the band at 100 GHz of our observations of Orion B. We
find that in both cases and in both types of physical conditions,

multiple ratios allow accurate predictions of the ionization frac-
tion, with R* > 0.8 (and up to 0.96). We investigated the impact
of the noise level on the predictive capability of the different ra-
tios After accounting for detectability and model reliability, we
recommend :

— for translucent medium conditions, Co;H (1-0) / HCN (1-0),
C,H (1-0) / HNC (1-0) or C,H (1-0) / CN (1-0),

— for cold dense medium conditions, CF* (1-0) / DCO* (1-0),
13CO (1-0) / HCO* (1-0) or CN (1-0) / NoH* (1-0) at low
enough noise level, or 3CO (1-0) / HCO* (1-0) or C'80 (1-
0) / HCO™ (1-0) if sensitivity is an issue.

In order to simplify the use of these predictors, we constructed
ad hoc analytical fits (using polynomials or saturated polynomi-
als) of the relationship of each observable tracer to the ionization
fraction. Contrary to the Random Forest models, the choice of
the analytical form of these fits is specific to the types of rela-
tionships observed in this specific application (different analyt-
ical forms might be necessary for other applications). We also
provide analytical formulae to estimate the uncertainty on any
measurement of the ionization fraction from these tracers. These
tracers will be used to study the ionization fraction in the Orion
B molecular cloud in a second paper (Guzman et al.|in prep.).

The method presented here is very general and could be eas-
ily applied to finding tracers of other related (cosmic ray ioniza-
tion rate, absolute electron abundance) or unrelated (gas density,
temperature, OPRy,,...) unobservable quantities. This method
can also be extended simply to simultaneously use pairs (or
more) of line ratios (by training RF models on the possible com-
binations of line ratios), which would likely further increase the
quality of the prediction.
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Fig. A.1. R? (OOB value) as a function of the tuning parameters of the
Random Forest (Nyees and dpax ), for the preliminary best (top panel) and
worst (bottom panel) ratios found though a preliminary estimate using
defaults values of the parameters, for line integrated intensity ratios and
translucent medium conditions. The red contours show the region where
the R? value is within 0.01 of the maximum.

Appendix A: Random Forest parameter
optimization

The Random Forest contains a few tuning parameters for which
a value needs to be chosen before training. In particular, we will
consider only the two most important here : the number of trees
in the forest Niees, and the maximum depth allowed for each tree,
dmax- Another usual parameter is not considered here: the num-
ber of predictors in the random subset considered when choosing
along which axis to make a split. Indeed, we will only train RF
models with a single predictor at a time, so that this number is
necessarily 1.

Since optimizing the choice of these parameters on the full
model grids (that will then be used for training) and for each
potential tracer will lead both to an increased risk of overfitting
and a heavy computational time cost, we opt for a very limited
optimization, where a single set of parameter values is used for
all tracers (i.e. for all RF models trained on a single ratio) and for
all model grids. The selection of these parameter values is done
with a simplified procedure:

1. For each model grid, RF models are first trained on each ra-
tio using default parameter values (default sklearn values,
Nirees = 100 and dyax = ©0), and the OOB R? value is calcu-
lated for each ratio.

2. For the two ratios having the best and worst R? in the previ-
ous step, RF models are trained for a grid of parameter values
exploring Nyees = 50 — 800 and d,x = 1 — 12, and the OOB
R? is again computed for RF models with each possible com-
bination of parameter values (the OOB value is used to limit
the risks of overfitting).

3. As the R? maps obtained show very flat minima, we found
a common set of parameter values assuring a R? within 0.01
of the best value in all cases. The parameter values found are
Niyees = 400, and dpx = 4.

In order to illustrate this procedure, Fig. [A.T] shows for in-
stance the resulting R? maps as a function of Niees and dpmax
for the preliminary best (top) and worst (bottom) tracers in the
translucent model grid when using line integrated intensity ra-
tios. The red contours delimit the region where R? is within 0.01
of its maximum value. We see that the variations with N are
limited to a decrease at low values. Any large enough value could
thus be chosen but larger values will induce higher computation
time cost, so that a minimal acceptable value had to be chosen.
The variations with d,.x show a clear maximum (although rather
flat). The R? value decreases for decreasing values of dp,x below
the optimum as the RF model then becomes not flexible enough
to capture the relationship between the predictor and the target
variable. Above the optimum, R?> decreases for increasing val-
ues of dp.x as overfitting starts to arise. The RF model becomes
too flexible and starts to learn noise artefacts (we recall that the
"noise" here is induced by the random sampling of the unobserv-
able physical parameters of the chemical model).

Appendix B: Tables for tracers ranking,
performance, and fit coefficients

Appendix B.1: Tracers ranking and performance

We provide here the ranking and performance of single ratio RF
models, obtained following the method described in Sect. E}

Appendix B.1.1: Translucent medium

Tables [B.T]and [B.2] present the ranking we obtain for translucent
medium conditions, respectively for column density ratios and
integrated line intensity ratios. See Sect. [2] for a description of
the method used, and Sect. {] for a discussion of these results.
For each ratio, we list the performance of the corresponding RF
model measured through the (cross-validated) R?, the equivalent
root mean square error on log;,(x(e™)) and the corresponding er-
ror factor on x(e™), the maximum absolute error on log;,(x(e™))
and the corresponding error factor on x(e™). We also list for com-
parison the R? value obtained with the analytical fit described in
Sect.

Appendix B.1.2: Cold dense medium

Tables [B.3] and [B.4] present the ranking we obtain for cold dense
medium conditions, respectively for column density ratios and
integrated line intensity ratios.
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Table B.1. Ranking of column density ratios according to their usefulness to predict the ionization fraction in translucent medium conditions
(measured through the R? of a fitted Random Forest model). Additional error measures of the Random Forest model (root mean square error and
maximum absolute errors) are also given. As these errors concern the logarithm of the ionization fraction, we also provide the equivalent error
factors on the ionization fraction. For comparison, the R? obtained with the analytical fit described in Sect. is also listed in the last column.

Column density ratio Random Forest Model Analytical fit
R?> Root mean square error Maximum absolute error R?
dex (equ. factor) dex (equ. factor)

C,H/HCN 0.96 0.15 (1.41) 0.71 (5.08) 0.96
C,H/*Co 0.94 0.18 (1.52) 1.19 (15.43) 0.93
C'®0/CF* 0.93 0.19 (1.53) 0.71 (5.12) 0.93
HCN /CF* 0.92 0.20 (1.59) 0.80 (6.37) 0.92
C,H/CB0 0.91 0.21 (1.64) 1.17 (14.89) 0.91
HCN/CN 0.89 0.24 (1.75) 1.11 (13.01) 0.88
3CO/CF* 0.88 0.25 .77 1.25 (17.97) 0.88
SO /HCS* 0.85 0.28 (1.90) 1.26 (18.04) 0.85
C,H /HNC 0.83 0.30 1.97) 1.23 (17.03) 0.82
HCO* / CF* 0.83 0.30 (2.00) 1.25 (17.70) 0.82
C,H/CN 0.82 0.30 (2.01) 1.28 (18.92) 0.81
Bco/c’®o 0.81 0.31 (2.05) 1.03 (10.66) 0.81
C,H /HCO* 0.78 0.34 (2.19) 1.58 (37.62) 0.77
SO /CH 0.78 0.34 (2.20) 1.24 (17.57) 0.77
HNC /CF* 0.77 0.35 (2.23) 1.32 (21.07) 0.76
H,CS/C,H 0.75 0.36 (2.3 1.22 (16.68) 0.75
SO /CF* 0.74 0.37 (2.33) 1.27 (18.42) 0.74
CN/CF* 0.73 0.37 (2.36) 1.57 (37.25) 0.73
CS /SO 0.71 0.39 (2.47) 1.91 (80.46) 0.69
C'80/CN 0.68 0.41 (2.56) 1.29 (19.62) 0.68
HCO" /CN 0.68 0.41 (2.59) 2.09 (123.19) 0.66
SO/CN 0.65 043 (2.67) 1.32 (20.73) 0.65
HNC/CN 0.64 0.43 2.71) 1.29 (19.65) 0.61
CS/CH 0.64 0.44 2.74) 1.36 (22.89) 0.63
CS /HCS* 0.63 0.44 (2.75) 1.49 (30.96) 0.64
H,CS /HCS* 0.62 0.45 (2.81) 1.66 (45.43) 0.62
H,CS / CF* 0.62 0.45 (2.82) 1.34 (22.12) 0.62
HCS* / C,H 0.59 047 (2.92) 1.56 (36.18) 0.57
SO/ *co 0.56 0.48 (3.02) 1.44 (27.56) 0.56
C,H/CF* 0.51 0.51 (3.22) 2.37 (235.58) 0.51
SO /HNC 0.51 0.51 (3.22) 1.35 (22.31) 0.51
SO /HCN 0.50 0.51 (3.24) 1.78 (60.42) 0.50
CS /CF* 0.50 0.51 (3.27) 1.46 (28.94) 0.50

Appendix B.2: Analytical fit coefficients

We provide here the fit coefficients for the analytical fits de-
scribed in Sect.

Appendix B.2.1: Translucent medium

Tables[B.3]and[B.6]list the fit coeflicients for translucent medium
conditions, respectively for column density ratios and integrated
line intensity ratios. See Sect. [3] for a description of the method
used. For each ratio, ranked according the results of SectE], we
list the fit coefficients (corresponding to the fit formula given
in Eq. 3) for predicting log,,(x(e™)), the quality of this fit esti-
mated as the (cross-validated) R?, the root mean square error on
log,,(x(e7)) and corresponding error factor on x(e™), the maxi-
mum absolute error on log,,(x(e”)) and corresponding error fac-
tor on x(e"), the fit coefficients (corresponding to the fit formula
given in Eq. ) for estimating the uncertainty on the prediction,
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and the limits of the validity range of the fit (given as log,, of
the ratio values.

Appendix B.2.2: Cold dense medium

Tables[B.7]and[B.8llist the fit coefficients for cold dense medium
conditions, respectively for column density ratios and integrated
line intensity ratios. For each ratio, ranked according the results
of Sect ] we list the fit coefficients (corresponding to the fit
formula given in Eq. [2) for predicting log,,(x(e7)), the quality
of this fit estimated as the (cross-validated) R?, the root mean
square error on log;,(x(e”)) and corresponding error factor on
x(e”), the maximum absolute error on log,,(x(e”)) and corre-
sponding error factor on x(e™), the fit coefficients (corresponding
to the fit formula given in Eq. [d) for estimating the uncertainty
on the prediction, and the limits of the validity range of the fit
(given as log, of the ratio values.
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Table B.2. Ranking of line intensity ratios according to their usefulness to predict the ionization fraction in translucent medium conditions
(measured through the R? of a fitted Random Forest model). Additional error measures of the Random Forest model (root mean square error and
maximum absolute errors) are also given. As these errors concern the logarithm of the ionization fraction, we also provide the equivalent error
factors on the ionization fraction. For comparison, the R? obtained with the analytical fit described in Sect. is also listed in the last column.

Line intensity ratio Random Forest Model Analytical fit
R?> Root mean square error Maximum absolute error R?
dex (equ. factor) dex (equ. factor)
CH(1-0)/HCN (1 -0) [0.93 0.19 (1.55) 1.13 (13.38) 0.93
C,H(1-0)/3CO(1-0) [0.92 0.20 (1.60) 1.28 (19.08) 0.92
C,H(1-0)/CB0O(1-0) [0.92 0.21 (1.62) 1.17 (14.87) 0.91
C'0 (1 -0)/CF*(1-0) |0.89 0.24 (1.74) 1.05 (11.30) 0.89
C,H(1-0)/HNC (1 -0) [0.87 0.26 (1.81) 1.13 (13.64) 0.87
SO(3-2)/HCS* (2-1) |0.85 0.28 (1.89) 1.23 (16.85) 0.85
BCO((1-0)/C®0 (1 -0)0.85 0.28 (1.92) 1.13 (13.63) 0.84
SO(3-2)/C,H(1-0) |0.80 0.33 (2.11) 1.25 (17.68) 0.80
CH((1-0)/CN(1-0) [0.80 0.33 (2.13) 1.27 (18.59) 0.78
C,H (1-0)/HCO" (1-0)|0.78 0.34 (2.20) 1.69 (48.69) 0.77
HCN (1-0)/CF* (1-0) [0.77 0.34 (2.21) 1.24 (17.44) 0.77
HCO" (1 -0)/CF* (1-0)|0.77 0.35 (2.23) 1.52 (32.81) 0.76
HNC (1 -0)/CF* (1-0) |0.77 0.35 (2.24) 1.34 (22.03) 0.76
3CO (1-0)/CF* (1-0) |0.76 0.36 2.27) 1.57 (37.42) 0.76
CN1-0)/CF*(1-0) |0.75 0.36 (2.29) 1.37 (23.24) 0.75
H,CS (3-2)/C,H(1-0)|0.75 0.36 (2.32) 1.25 (17.96) 0.75
SO(B3-2)/CF*(1-0) |0.74 0.37 (2.33) 1.25 (17.93) 0.75
cCS2-1/SO@B-2) |0.70 0.39 (2.48) 1.97 (92.77) 0.69
CH1-0)/CF*(1-0) [0.69 0.40 (2.53) 2.31 (204.15) 0.68
CS2-1)/CH(1-0) [0.69 0.41 (2.55) 1.28 (18.86) 0.68
SOB3-2)/CN(1-0) [0.67 0.42 (2.61) 1.24 (17.21) 0.67
SO(B-2)/HCN (1-0) [0.66 0.42 (2.64) 1.39 (24.56) 0.66
HCS*(2-1)/C,H(1-0) |0.64 0.44 (2.72) 1.42 (26.42) 0.62
HCN (1 -0)/HNC (1 -0)|0.64 0.44 (2.74) 1.41 (25.71) 0.63
SO(3-2)/BCO(1-0) [0.63 0.44 2.77) 1.41 (25.64) 0.63
H,CS (3-2)/CF* (1-0) |0.59 0.47 (2.93) 1.43 (26.73) 0.59
CS2-1)/HCS*(2-1) |0.58 0.47 (2.94) 1.50 (31.41) 0.58
C®0(1-0)/CN(1-0) [0.56 0.48 (3.02) 1.67 (47.20) 0.56
SO(3-2)/HNC(1-0) [0.53 0.50 (3.14) 1.33 (21.52) 0.53
HCO* (1-0)/CN (1-0) |0.52 0.50 (3.16) 2.40 (250.68) 0.50
SO(3-2)/C®0(1-0) [0.51 0.51 (3.21) 1.45 (28.30) 0.52
CS2-1)/CF"(1-0) [0.50 0.51 (3.25) 1.42 (26.06) 0.51
Appendix C: Analytical model visualization Appendix C.2: Cold Dense medium

Figure[C.3]and[C.4]similarly present the scatter plots (for column
density ratios and integrated line intensity ratios respectively) for
We present in this section figures of the RF models and analytical the best six tracers in cold dense medium conditions.
fits for the best six tracers in each case.

Appendix C.1: Translucent medium

Figure[C.T] presents scatter plots of the ionization fraction versus
each of the best six column density ratios in translucent medium
conditions. Superimposed are the RF model (red line), the an-
alytical fit (solid black line), the uncertainty fit (dashed lines),
and the validity range (blue vertical lines). Figure [C.2] similarly
shows scatter plots of the ionization fraction versus each of the
best six integrated line intensity ratios in translucent medium
conditions.
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Table B.3. Ranking of column density ratios according to their usefulness to predict the ionization fraction in dense cold medium conditions
(measured through the R? of a fitted Random Forest model). Additional error measures of the Random Forest model (root mean square error and
maximum absolute errors) are also given. As these errors concern the logarithm of the ionization fraction, we also provide the equivalent error
factors on the ionization fraction. For comparison, the R? obtained with the analytical fit described in Sect. is also listed in the last column.

Column density ratio Random Forest Model Analytical fit
R?> Root mean square error Maximum absolute error R?
dex (equ. factor) dex (equ. factor)

CN/N,H* 0.92 0.23 (1.70) 1.49 (30.76) 0.92
HNC/CN 0.89 0.27 (1.88) 1.19 (15.47) 0.89
SO /HCS* 0.88 0.28 (1.90) 1.43 (26.66) 0.83
CN/DCO* 0.88 0.28 (1.93) 1.14 (13.79) 0.88
HCN/CN 0.88 0.29 (1.93) 1.25 (17.91) 0.88
HCO* /CN 0.82 0.34 (2.20) 1.60 (39.74) 0.82
C,H/N,H* 0.82 0.34 (2.20) 1.44 (27.71) 0.77
C,H/DCO* 0.82 0.35 (2.22) 1.55 (35.52) 0.81
C'0/CN 0.81 0.36 (2.28) 1.21 (16.32) 0.81
CF* /DCO* 0.80 0.36 (2.30) 1.76 (57.33) 0.79
BCo/CN 0.79 0.38 2.37) 1.74 (55.31) 0.79
C,H/CF* 0.79 0.38 (2.37) 1.18 (15.22) 0.78
SO/CN 0.78 0.38 (2.40) 1.26 (18.41) 0.78
C,H/HCO* 0.77 0.39 (2.44) 1.17 (14.86) 0.77
CS /SO 0.77 0.39 (2.44) 1.66 (45.38) 0.76
C,H/C"®0 0.75 0.41 (2.55) 1.28 (19.24) 0.75
C,H/BCo 0.75 0.41 (2.55) 1.31 (20.30) 0.75
SO /CH 0.71 0.43 (2.72) 1.33 (21.26) 0.71
HCO™* / CF* 0.71 0.44 (2.74) 1.31 (20.43) 0.71
H,CS/C,H 0.70 0.45 (2.80) 1.33 (21.54) 0.69
H,CS /CN 0.70 0.45 (2.81) 1.31 (20.62) 0.70
C,H/HCN 0.69 0.45 (2.84) 1.23 (17.04) 0.68
HCS* /CN 0.69 0.45 (2.84) 1.62 (41.78) 0.69
C,H/HNC 0.68 0.46 (2.89) 1.28 (18.88) 0.67
HNC/DCO* 0.67 0.47 (2.92) 1.75 (56.81) 0.67
C"®0/CF* 0.67 0.47 (2.94) 1.42 (26.28) 0.66
3CO/CF* 0.66 0.47 2.97) 1.50 (31.82) 0.66
HCN /DCO* 0.65 0.48 (3.00) 1.80 (62.41) 0.65
CS/CN 0.65 0.48 (3.02) 1.57 (37.48) 0.65
HCS* / C,H 0.65 0.48 (3.03) 1.55 (35.61) 0.64
HNC /N,H* 0.65 0.48 (3.04) 2.27 (186.97) 0.63
CN/CF* 0.64 0.49 (3.06) 2.39 (243.03) 0.64
SO /HNC 0.62 0.50 (3.15) 1.53 (33.96) 0.62
SO /HCN 0.61 0.50 (3.20) 1.58 (37.94) 0.61
CS/CH 0.61 0.50 (3.20) 1.54 (34.65) 0.60
SO /CF* 0.61 0.51 (3.20) 1.70 (49.64) 0.60
HCN /N,H* 0.61 0.51 (3.24) 2.26 (182.07) 0.59
HCO™" / DCO* 0.57 0.53 (3.40) 241 (255.07) 0.57
CF* /N,H* 0.54 0.55 (3.54) 2.42 (263.85) 0.54
HCO™" /HNC 0.54 0.55 (3.58) 2.39 (245.88) 0.53
SO /H,CS 0.52 0.56 (3.66) 1.60 (39.64) 0.51
HCO* / HCN 0.51 0.57 (3.70) 2.43 (267.69) 0.50
DCO* /N,H* 0.50 0.57 (3.75) 2.18 (151.70) 0.50
C'80/HNC 0.50 0.58 (3.78) 2.02 (105.54) 0.50

Article number, page 20 of 29



Emeric Bron et al.: Tracers of the ionization fraction in molecular clouds: 1.

Table B.4. Ranking of line intensity ratios according to their usefulness to predict the ionization fraction in dense cold medium conditions
(measured through the R? of a fitted Random Forest model). Additional error measures of the Random Forest model (root mean square error and
maximum absolute errors) are also given. As these errors concern the logarithm of the ionization fraction, we also provide the equivalent error
factors on the ionization fraction. For comparison, the R? obtained with the analytical fit described in Sect. is also listed in the last column.

Line intensity ratio Random Forest Model Analytical fit
R?> Root mean square error Maximum absolute error R?
dex (equ. factor) dex (equ. factor)
CF* (1 -0)/DCO* (1 -0) [0.86 0.30 (2.00) 1.57 (36.93) 0.85
BCO (1 -0)/HCO* (1-0) |0.86 0.30 (2.01) 1.45 (27.93) 0.86
CN(1-0)/NH* (1-0) |0.86 0.30 (2.01) 1.83 (66.88) 0.86
C,H(1 -0)/N,H" (1-0) [0.86 0.31 (2.04) 1.09 (12.29) 0.81
HCO*" (1-0)/CF*(1-0) |0.84 0.33 (2.12) 1.14 (13.75) 0.83
CGHA-0)/HCN (1 -0) [0.83 0.34 (2.19) 1.32 (20.69) 0.81
3CO (1 -0)/DCO* (1-0) [0.81 0.35 (2.24) 1.92 (82.34) 0.82
C,H(1-0)/HNC (1 -0) |0.81 0.35 (2.24) 1.35 (22.14) 0.80
C'0 (1 -0)/DCO* (1 -0) |0.81 0.35 (2.26) 1.77 (58.68) 0.81
C,H (1 -0)/DCO* (1-0) [0.80 0.36 (2.30) 1.58 (38.36) 0.80
CF* (1 -0)/NH* (1-0) |0.80 0.37 (2.32) 2.09 (122.49) 0.77
C,H (1 -0)/HCO" (1-0) |0.79 0.37 (2.37) 1.19 (15.64) 0.78
CN (1 -0)/DCO* (1-0) |0.78 0.38 (2.41) 1.58 (37.69) 0.78
C"®0 (1 -0)/HCO" (1-0) [0.76 0.40 (2.52) 1.30 (20.13) 0.75
HCO* (1-0)/CN(1-0) [0.75 0.41 (2.55) 1.83 (67.50) 0.75
HCN(1-0)/CN({-0) [0.75 0.41 (2.56) 2.18 (152.46) 0.75
HNC(1-0)/CN(1-0) |0.75 0.41 2.57) 1.64 (43.67) 0.75
SO3-2)/C,H(1-0) ]0.73 043 (2.66) 1.36 (22.71) 0.72
SOB3-2)/CN(1-0) 0.70 0.44 (2.78) 1.42 (26.59) 0.70
CS2-1)/CH({1-0) |0.70 0.44 (2.79) 1.41 (25.43) 0.70
SO(3-2)/BCO1-0) [0.69 0.45 (2.83) 1.71 (51.83) 0.67
H,CS(3-2)/C,H(1-0) |0.68 0.46 (2.86) 1.45 (28.31) 0.68
BCO (1-0)/N,H* (1-0) |0.65 0.48 (3.00) 2.30 (201.04) 0.65
SO(B3-2)/CFf*(1-0) |0.64 0.49 (3.06) 1.46 (29.17) 0.63
CS2-1)/CN({1-0) 0.64 0.49 (3.06) 1.62 (42.00) 0.64
CH@-0/CFr(1-0) |0.64 0.49 (3.09) 1.37 (23.67) 0.63
HNC (1 - 0)/DCO* (1 -0) [0.60 0.52 (3.28) 2.00 (99.15) 0.60
SO(@B3-2)/HNC(1-0) |0.58 0.53 (3.36) 1.64 44.11) 0.52
SOB3-2)/HCN (1 -0) [0.57 0.53 341 1.66 (45.48) 0.50
H,CS(3-2)/CN(1-0) |0.56 0.54 (3.44) 1.86 (72.28) 0.56
HCN (1 - 0)/DCO* (1 -0) |{0.56 0.54 (3.45) 1.99 (98.14) 0.56
C,H(1-0)/3CO(1-0) |0.56 0.54 (3.47) 1.38 (23.81) 0.54
SO@3-2)/C®0(1-0) [0.56 0.54 (3.47) 2.15 (140.92) 0.54
C'80 (1 -0)/N,H* (1-0) |0.55 0.54 (3.48) 2.40 (248.83) 0.55
HNC (1 -0)/N,H* (1-0) |0.55 0.55 (3.52) 2.14 (138.57) 0.55
HCS* 2-1)/C,H(1-0) |0.54 0.55 (3.53) 1.64 (43.65) 0.52
HCO" (1 -0)/HNC (1 -0) |0.54 0.55 3.57) 2.09 (123.36) 0.54
CH(1-0)/C®0 (1 -0) [0.53 0.56 (3.61) 1.40 (25.06) 0.50
CS2-1)/CF*r(1-0) |0.52 0.56 (3.64) 2.11 (127.92) 0.52
HCO* (1 - 0)/DCO* (1 -0)|0.52 0.57 (3.68) 2.71 (509.55) 0.52
HCO* (1 -0)/HCN (1 -0) [0.51 0.57 (3.69) 2.16 (143.66) 0.51
CS2-1)/HCS*(2-1) |0.51 0.57 (3.73) 1.79 (61.10) 0.51
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Fig. C.1. Ionization fraction versus column density ratio for the best six ratios found in Sect@ for translucent medium conditions. The chemical
model grid is shown as a scatter plot, with the central crowded regions replaced by PDF isocontours containing 25%, 50%, and 75% of the points.
Superimposed are the RF model (red line), the analytical fit (solid black line), and the analytical fit of the 1o~ uncertainty (dashed black lines). The
quality estimates of the two models are indicated on the figure.
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Fig. C.2. Ionization fraction versus integrated line intensity ratio for the best six ratios found in SectEl for translucent medium conditions. The
chemical model grid is shown as a scatter plot, with the central crowded regions replaced by PDF isocontours containing 25%, 50%, and 75% of
the points. Superimposed are the RF model (red line), the analytical fit (solid black line), and the analytical fit of the 10~ uncertainty (dashed black
lines). The quality estimates of the two models are indicated on the figure.
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Fig. C.3. Ionization fraction versus column density ratio for the best six ratios found in SectEl for cold dense medium conditions. The chemical
model grid is shown as a scatter plot, with the central crowded regions replaced by PDF isocontours containing 25%, 50%, and 75% of the points.
Superimposed are the RF model (red line), the analytical fit (solid black line), and the analytical fit of the 10~ uncertainty (dashed black lines). The
quality estimates of the two models are indicated on the figure.
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Fig. C.4. Ionization fraction versus integrated line intensity ratio for the best six ratios found in SectEl for cold dense medium conditions. The
chemical model grid is shown as a scatter plot, with the central crowded regions replaced by PDF isocontours containing 25%, 50%, and 75% of
the points. Superimposed are the RF model (red line), the analytical fit (solid black line), and the analytical fit of the 10~ uncertainty (dashed black
lines). The quality estimates of the two models are indicated on the figure.
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