Basic Equations

The LO2 frequency used to track a spectral line at a given frequency Frest centered in the IF band (350 $MHz$) is
  $\displaystyle Flo2 = \frac{ Frest \times Doppler + S \times 350 + M \times L \times Eps }
{ M \times H + S }
$ (6)
and, from eq. (5), the image rest frequency at the band center is
  $\displaystyle F_{I} = \frac{ (M \times H-S) \times Flo2
- M \times L \times Eps + S \times 350}
{Doppler}
$ (7)
A little algebra follows

$F_{I} = \frac{ \frac{M \times H-S}{M \times H+S} \times ( Frest \times
Doppler...
...0 + M \times L \times Eps ) - M \times L \times Eps
+ S \times 350}
{Doppler} $

$F_{I} = \frac{ (M \times H-S) \times ( Frest \times Doppler + S \times
350 + M...
...times (S \times 350 - M
\times L \times Eps) }
{(M \times H+S)\times Doppler} $

$F_{I} = \frac{M \times H-S}{M \times H+S} \times Frest + \frac{ (M\times
H-S+ ...
...- M \times H+S)
\times M \times L \times Eps }
{(M \times H+S)\times Doppler} $

$F_{I} = \frac{M \times H-S}{M \times H+S} \times Frest + \frac{ 2 \times
M \ti...
...0 - 2 \times S \times M \times L \times Eps
}
{(M \times H+S) \times Doppler} $

cm and result in

  $\displaystyle F_{I} = \frac{M \times H-S}{M \times H+S} \times Frest
+ \frac{ ...
...imes M \times ( H \times 350 - L \times Eps)}
{(M \times H+S) \times Doppler}
$ (8)

This result is not independent of the Doppler effect. Accordingly, it the doppler tracking is not exact for the image frequency. and for 2 different values, $D1$ and $D2$, corresponding to different velocities $V1$ and $V2$, we obtain (assuming no change of $H$)
  $\displaystyle \delta F_{I} = \frac{D2-D1}{ D2 \times D1} \times
\frac{ 2 \times S \times M \times ( H \times 350 - L \times Eps) }
{M \times H+S}
$ (9)
or, assuming $V1$ and $V2 << c$, and with $H >> 1$, $M > 1$, the frequency shift in MHz is
  $\displaystyle \delta F_{I} = \frac{\delta V}{c} \times 700
$ (10)
or, in velocity (in km.s$^{-1}$)
  $\displaystyle \delta V_{I} = \delta V \frac{700}{F_I}
$ (11)